Time-Slice-Cross-Validation and Parameter Stability#
In this notebook we will illustrate how to perform time-slice cross validation for a media mix model. This is an important step to evaluate the stability and quality of the model. We not only look into out of sample predictions but also the stability of the model parameters.
These imports and configurations form the fundamental setup necessary for the entire span of this notebook.
The expectation is that a model has already been trained using the functionalities provided in prior versions of the PyMC-Marketing library. Thus, the data generation and training processes will be replicated in a different notebook. Those unfamiliar with these procedures are advised to refer to the “MMM Example Notebook.”
Prepare Notebook#
import warnings
import arviz as az
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from pymc_marketing.mmm.time_slice_cross_validation import TimeSliceCrossValidator
from pymc_marketing.paths import data_dir
warnings.simplefilter(action="ignore", category=FutureWarning)
az.style.use("arviz-darkgrid")
plt.rcParams["figure.figsize"] = [12, 7]
plt.rcParams["figure.dpi"] = 100
plt.rcParams["figure.facecolor"] = "white"
%load_ext autoreload
%autoreload 2
%config InlineBackend.figure_format = "retina"
/Users/juanitorduz/Documents/pymc-marketing/pymc_marketing/pytensor_utils.py:34: FutureWarning: `pytensor.graph.basic.ancestors` was moved to `pytensor.graph.traversal.ancestors`. Calling it from the old location will fail in a future release.
from pytensor.graph.basic import ancestors
/Users/juanitorduz/Documents/pymc-marketing/pymc_marketing/mmm/multidimensional.py:216: FutureWarning: This functionality is experimental and subject to change. If you encounter any issues or have suggestions, please raise them at: https://github.com/pymc-labs/pymc-marketing/issues/new
warnings.warn(warning_msg, FutureWarning, stacklevel=1)
/Users/juanitorduz/Documents/pymc-marketing/pymc_marketing/mmm/time_slice_cross_validation.py:32: UserWarning: The pymc_marketing.mmm.builders module is experimental and its API may change without warning.
from pymc_marketing.mmm.builders.yaml import build_mmm_from_yaml
seed: int = sum(map(ord, "mmm"))
rng: np.random.Generator = np.random.default_rng(seed=seed)
Loading Data#
Here we will load our geo level dataset. This will then be used within our Time-Slice CV steps.
data_path = data_dir / "multidimensional_mock_data.csv"
data_df = pd.read_csv(data_path, parse_dates=["date"], index_col=0)
data_df.head()
| date | y | x1 | x2 | event_1 | event_2 | dayofyear | t | geo | |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 2018-04-02 | 3984.662237 | 159.290009 | 0.0 | 0.0 | 0.0 | 92 | 0 | geo_a |
| 1 | 2018-04-09 | 3762.871794 | 56.194238 | 0.0 | 0.0 | 0.0 | 99 | 1 | geo_a |
| 2 | 2018-04-16 | 4466.967388 | 146.200133 | 0.0 | 0.0 | 0.0 | 106 | 2 | geo_a |
| 3 | 2018-04-23 | 3864.219373 | 35.699276 | 0.0 | 0.0 | 0.0 | 113 | 3 | geo_a |
| 4 | 2018-04-30 | 4441.625278 | 193.372577 | 0.0 | 0.0 | 0.0 | 120 | 4 | geo_a |
X = data_df.drop(columns=["y"])
y = data_df["y"]
Specify Time-Slice-Cross-Validation Strategy#
The main idea of the time-slice cross validation process is to fit the model on a time slice of the data and then evaluate it on the next time slice. We repeat this process for each time slice of the data. As we want to simulate a production-like environment where we enlarge our training data over time, we make the time-slice size grow over time.
Data Leakage
It is very important to avoid data leakage when performing time-slice cross validation. This means that the model should not see any training data from the future. This also includes any data pre-processing steps!
For example, as mentioned above, we need to compute the costs share for each training time slice independently if we want to avoid data leakage. Other sources of data leakage include using a global feature for thr trend component. In our case, we simply use an increasing variable t so we are safe as we just increase it by one for each time slice.
Run Time-Slice-Cross-Validation Loop#
Depending on the business requirements, we need to decide the initial number of observations to use for fitting the model (n_init) and the forecast horizon (forecast_horizon). For this example, we use the first 342 observations to fit the model and then predict the next 12 observations (3 months).
# Initialize cross-validator
cv = TimeSliceCrossValidator(
n_init=163,
forecast_horizon=12,
date_column="date",
step_size=1,
)
# We can check how many splits we will have
# As a reference, the number of splits is computed as:
# n_iterations = y.size - n_init - forecast_horizon + 1
n_splits = cv.get_n_splits(X, y)
print(f"Number of splits: {n_splits}")
Number of splits: 5
Let’s run it!
For more details on the build_mmm_from_yaml, consult the pymc-marketing documentation on Model Deployment.
Alternatively, load a model that has been saved to MLflow via pymc_marketing.mlflow.log_inference_data or has been autologged to MLflow via pymc_marketing.mlflow.autolog(log_mmm=True), from the PyMC-Marketing MLflow module.
results = cv.run(
X,
y,
# You can also pass sampler_config here to speed things up
sampler_config={
"tune": 1_000,
"draws": 1_000,
"chains": 4,
"random_seed": seed,
"target_accept": 0.90,
"nuts_sampler": "numpyro",
},
yaml_path=data_dir / "config_files" / "multi_dimensional_example_model.yml",
)
Sampling: [y]
Sampling: [y]
Sampling: [y]
Sampling: [y]
Sampling: [y]
# We can view the cross-validation results!
# The CV object is an instance of ArviZ InferenceData
results
-
- cv: 5
- chain: 4
- draw: 1000
- channel: 2
- changepoint: 5
- geo: 2
- control: 2
- fourier_mode: 4
- date: 167
- cv(cv)object'Iteration 0' ... 'Iteration 4'
array(['Iteration 0', 'Iteration 1', 'Iteration 2', 'Iteration 3', 'Iteration 4'], dtype=object) - chain(chain)int640 1 2 3
array([0, 1, 2, 3])
- draw(draw)int640 1 2 3 4 5 ... 995 996 997 998 999
array([ 0, 1, 2, ..., 997, 998, 999], shape=(1000,))
- channel(channel)<U2'x1' 'x2'
array(['x1', 'x2'], dtype='<U2')
- changepoint(changepoint)int640 1 2 3 4
array([0, 1, 2, 3, 4])
- geo(geo)<U5'geo_a' 'geo_b'
array(['geo_a', 'geo_b'], dtype='<U5')
- control(control)<U7'event_1' 'event_2'
array(['event_1', 'event_2'], dtype='<U7')
- fourier_mode(fourier_mode)<U5'sin_1' 'sin_2' 'cos_1' 'cos_2'
array(['sin_1', 'sin_2', 'cos_1', 'cos_2'], dtype='<U5')
- date(date)datetime64[ns]2018-04-02 ... 2021-06-07
array(['2018-04-02T00:00:00.000000000', '2018-04-09T00:00:00.000000000', '2018-04-16T00:00:00.000000000', '2018-04-23T00:00:00.000000000', '2018-04-30T00:00:00.000000000', '2018-05-07T00:00:00.000000000', '2018-05-14T00:00:00.000000000', '2018-05-21T00:00:00.000000000', '2018-05-28T00:00:00.000000000', '2018-06-04T00:00:00.000000000', '2018-06-11T00:00:00.000000000', '2018-06-18T00:00:00.000000000', '2018-06-25T00:00:00.000000000', '2018-07-02T00:00:00.000000000', '2018-07-09T00:00:00.000000000', '2018-07-16T00:00:00.000000000', '2018-07-23T00:00:00.000000000', '2018-07-30T00:00:00.000000000', '2018-08-06T00:00:00.000000000', '2018-08-13T00:00:00.000000000', '2018-08-20T00:00:00.000000000', '2018-08-27T00:00:00.000000000', '2018-09-03T00:00:00.000000000', '2018-09-10T00:00:00.000000000', '2018-09-17T00:00:00.000000000', '2018-09-24T00:00:00.000000000', '2018-10-01T00:00:00.000000000', '2018-10-08T00:00:00.000000000', '2018-10-15T00:00:00.000000000', '2018-10-22T00:00:00.000000000', '2018-10-29T00:00:00.000000000', '2018-11-05T00:00:00.000000000', '2018-11-12T00:00:00.000000000', '2018-11-19T00:00:00.000000000', '2018-11-26T00:00:00.000000000', '2018-12-03T00:00:00.000000000', '2018-12-10T00:00:00.000000000', '2018-12-17T00:00:00.000000000', '2018-12-24T00:00:00.000000000', '2018-12-31T00:00:00.000000000', '2019-01-07T00:00:00.000000000', '2019-01-14T00:00:00.000000000', '2019-01-21T00:00:00.000000000', '2019-01-28T00:00:00.000000000', '2019-02-04T00:00:00.000000000', '2019-02-11T00:00:00.000000000', '2019-02-18T00:00:00.000000000', '2019-02-25T00:00:00.000000000', '2019-03-04T00:00:00.000000000', '2019-03-11T00:00:00.000000000', '2019-03-18T00:00:00.000000000', '2019-03-25T00:00:00.000000000', '2019-04-01T00:00:00.000000000', '2019-04-08T00:00:00.000000000', '2019-04-15T00:00:00.000000000', '2019-04-22T00:00:00.000000000', '2019-04-29T00:00:00.000000000', '2019-05-06T00:00:00.000000000', '2019-05-13T00:00:00.000000000', '2019-05-20T00:00:00.000000000', '2019-05-27T00:00:00.000000000', '2019-06-03T00:00:00.000000000', '2019-06-10T00:00:00.000000000', '2019-06-17T00:00:00.000000000', '2019-06-24T00:00:00.000000000', '2019-07-01T00:00:00.000000000', '2019-07-08T00:00:00.000000000', '2019-07-15T00:00:00.000000000', '2019-07-22T00:00:00.000000000', '2019-07-29T00:00:00.000000000', '2019-08-05T00:00:00.000000000', '2019-08-12T00:00:00.000000000', '2019-08-19T00:00:00.000000000', '2019-08-26T00:00:00.000000000', '2019-09-02T00:00:00.000000000', '2019-09-09T00:00:00.000000000', '2019-09-16T00:00:00.000000000', '2019-09-23T00:00:00.000000000', '2019-09-30T00:00:00.000000000', '2019-10-07T00:00:00.000000000', '2019-10-14T00:00:00.000000000', '2019-10-21T00:00:00.000000000', '2019-10-28T00:00:00.000000000', '2019-11-04T00:00:00.000000000', '2019-11-11T00:00:00.000000000', '2019-11-18T00:00:00.000000000', '2019-11-25T00:00:00.000000000', '2019-12-02T00:00:00.000000000', '2019-12-09T00:00:00.000000000', '2019-12-16T00:00:00.000000000', '2019-12-23T00:00:00.000000000', '2019-12-30T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-13T00:00:00.000000000', '2020-01-20T00:00:00.000000000', '2020-01-27T00:00:00.000000000', '2020-02-03T00:00:00.000000000', '2020-02-10T00:00:00.000000000', '2020-02-17T00:00:00.000000000', '2020-02-24T00:00:00.000000000', '2020-03-02T00:00:00.000000000', '2020-03-09T00:00:00.000000000', '2020-03-16T00:00:00.000000000', '2020-03-23T00:00:00.000000000', '2020-03-30T00:00:00.000000000', '2020-04-06T00:00:00.000000000', '2020-04-13T00:00:00.000000000', '2020-04-20T00:00:00.000000000', '2020-04-27T00:00:00.000000000', '2020-05-04T00:00:00.000000000', '2020-05-11T00:00:00.000000000', '2020-05-18T00:00:00.000000000', '2020-05-25T00:00:00.000000000', '2020-06-01T00:00:00.000000000', '2020-06-08T00:00:00.000000000', '2020-06-15T00:00:00.000000000', '2020-06-22T00:00:00.000000000', '2020-06-29T00:00:00.000000000', '2020-07-06T00:00:00.000000000', '2020-07-13T00:00:00.000000000', '2020-07-20T00:00:00.000000000', '2020-07-27T00:00:00.000000000', '2020-08-03T00:00:00.000000000', '2020-08-10T00:00:00.000000000', '2020-08-17T00:00:00.000000000', '2020-08-24T00:00:00.000000000', '2020-08-31T00:00:00.000000000', '2020-09-07T00:00:00.000000000', '2020-09-14T00:00:00.000000000', '2020-09-21T00:00:00.000000000', '2020-09-28T00:00:00.000000000', '2020-10-05T00:00:00.000000000', '2020-10-12T00:00:00.000000000', '2020-10-19T00:00:00.000000000', '2020-10-26T00:00:00.000000000', '2020-11-02T00:00:00.000000000', '2020-11-09T00:00:00.000000000', '2020-11-16T00:00:00.000000000', '2020-11-23T00:00:00.000000000', '2020-11-30T00:00:00.000000000', '2020-12-07T00:00:00.000000000', '2020-12-14T00:00:00.000000000', '2020-12-21T00:00:00.000000000', '2020-12-28T00:00:00.000000000', '2021-01-04T00:00:00.000000000', '2021-01-11T00:00:00.000000000', '2021-01-18T00:00:00.000000000', '2021-01-25T00:00:00.000000000', '2021-02-01T00:00:00.000000000', '2021-02-08T00:00:00.000000000', '2021-02-15T00:00:00.000000000', '2021-02-22T00:00:00.000000000', '2021-03-01T00:00:00.000000000', '2021-03-08T00:00:00.000000000', '2021-03-15T00:00:00.000000000', '2021-03-22T00:00:00.000000000', '2021-03-29T00:00:00.000000000', '2021-04-05T00:00:00.000000000', '2021-04-12T00:00:00.000000000', '2021-04-19T00:00:00.000000000', '2021-04-26T00:00:00.000000000', '2021-05-03T00:00:00.000000000', '2021-05-10T00:00:00.000000000', '2021-05-17T00:00:00.000000000', '2021-05-24T00:00:00.000000000', '2021-05-31T00:00:00.000000000', '2021-06-07T00:00:00.000000000'], dtype='datetime64[ns]')
- adstock_alpha(cv, chain, draw, channel)float640.4178 0.2545 ... 0.4396 0.1449
array([[[[0.41783139, 0.2545387 ], [0.38968222, 0.25448131], [0.40957265, 0.23943796], ..., [0.3562229 , 0.25779282], [0.31920974, 0.19244778], [0.43274788, 0.28263732]], [[0.35408931, 0.21853386], [0.39526153, 0.17570884], [0.38906523, 0.23598588], ..., [0.3705661 , 0.24155635], [0.33816693, 0.258781 ], [0.41512986, 0.21045071]], [[0.42013397, 0.2632116 ], [0.42320392, 0.28449175], [0.39386058, 0.15748036], ..., ... ..., [0.35268449, 0.21194226], [0.40507811, 0.23751625], [0.40168178, 0.20883973]], [[0.42445163, 0.32864061], [0.42630504, 0.33657392], [0.39681011, 0.17003697], ..., [0.39829052, 0.20794106], [0.39565663, 0.18621539], [0.403199 , 0.22215385]], [[0.39868748, 0.23157954], [0.41695717, 0.21057552], [0.34304727, 0.24848122], ..., [0.44535091, 0.17913566], [0.31347803, 0.21565096], [0.43957377, 0.14485824]]]], shape=(5, 4, 1000, 2)) - delta(cv, chain, draw, changepoint, geo)float640.139 0.09139 ... 0.08374 -0.02836
array([[[[[ 1.39040179e-01, 9.13927147e-02], [ 2.84122760e-02, 2.09261962e-02], [-4.85072194e-02, -7.09287968e-02], [-5.04810026e-02, 2.90429285e-04], [-1.49046301e-01, 4.11604036e-02]], [[ 6.63081369e-02, 6.32909489e-02], [ 2.60966637e-02, 3.90746559e-04], [ 4.79683071e-02, 4.22701224e-02], [ 5.98327506e-02, -6.79777310e-03], [ 1.25655311e-01, 4.30213231e-02]], [[ 1.48986738e-01, 7.40368830e-02], [-3.84193959e-02, 2.11543936e-02], [-5.28937003e-02, -2.33189781e-02], [-2.55923608e-02, 1.70579279e-02], [ 1.85006264e-02, -5.05951986e-02]], ..., ... ..., [[ 6.07679447e-02, 4.44919187e-02], [ 1.16415459e-01, 2.80252088e-02], [-8.84007963e-02, 5.77446802e-03], [ 6.81332574e-03, 8.57599418e-02], [ 9.01018458e-02, -4.89613875e-02]], [[-2.56619209e-02, 1.20706411e-01], [ 1.84747004e-01, 1.33280432e-02], [-8.58158372e-02, -3.23761602e-02], [-1.69911982e-02, -1.81817615e-02], [-9.80134904e-02, -2.52929375e-02]], [[ 6.85896506e-02, 8.25678511e-02], [ 1.81971748e-02, -3.25534712e-02], [ 3.43627517e-02, -8.45288887e-05], [ 1.25795720e-02, 9.72546615e-02], [ 8.37368274e-02, -2.83579021e-02]]]]], shape=(5, 4, 1000, 5, 2)) - delta_b(cv, chain, draw)float640.04897 0.03734 ... 0.0686 0.04274
array([[[0.04896638, 0.03733978, 0.05180974, ..., 0.06851264, 0.08679167, 0.07547635], [0.08486142, 0.06841317, 0.08489346, ..., 0.04799437, 0.06467105, 0.04150884], [0.04671504, 0.04237533, 0.06388722, ..., 0.0303728 , 0.04605307, 0.04286573], [0.14175041, 0.15067693, 0.13953521, ..., 0.05610844, 0.03865135, 0.03661843]], [[0.03289779, 0.02047884, 0.03387157, ..., 0.07411721, 0.09104868, 0.06838844], [0.05779548, 0.08893911, 0.09350124, ..., 0.03599661, 0.04378467, 0.03626936], [0.0565735 , 0.0522682 , 0.05408962, ..., 0.03436686, 0.01688922, 0.13029755], [0.23679454, 0.22336477, 0.16149955, ..., 0.11190312, 0.12213773, 0.09293019]], [[0.08143499, 0.02934844, 0.04890097, ..., 0.07413455, 0.07073227, 0.06057538], ... [0.11841389, 0.14925725, 0.22758138, ..., 0.042155 , 0.04154635, 0.05642503]], [[0.08350536, 0.07744436, 0.07072115, ..., 0.06997988, 0.08001889, 0.06426139], [0.05342495, 0.0327173 , 0.05353268, ..., 0.02465477, 0.03321773, 0.04305843], [0.0731481 , 0.06346975, 0.06540295, ..., 0.03260591, 0.07289852, 0.05106436], [0.11247209, 0.14443563, 0.23297157, ..., 0.04041843, 0.05365809, 0.05253433]], [[0.03567993, 0.02216438, 0.03400843, ..., 0.07774288, 0.0914016 , 0.05863546], [0.04393437, 0.03405923, 0.05799729, ..., 0.02185872, 0.04013079, 0.0453866 ], [0.05874998, 0.05404707, 0.05504066, ..., 0.03186083, 0.03397835, 0.05552124], [0.12369969, 0.14577342, 0.18926034, ..., 0.06823956, 0.06859702, 0.04273504]]], shape=(5, 4, 1000)) - gamma_control(cv, chain, draw, control)float640.2546 0.2939 ... 0.3351 0.3372
array([[[[0.25459461, 0.29393763], [0.28011127, 0.33110182], [0.26513737, 0.34568891], ..., [0.29272528, 0.28729883], [0.25198149, 0.27647446], [0.28641309, 0.38519803]], [[0.22215376, 0.29880873], [0.28803732, 0.33834826], [0.23991843, 0.35062647], ..., [0.19702247, 0.29818721], [0.23506104, 0.30889739], [0.29566048, 0.36942394]], [[0.29675473, 0.28810354], [0.26850084, 0.29642633], [0.24920429, 0.35131506], ..., ... ..., [0.21289089, 0.28722356], [0.2585673 , 0.32296478], [0.29438348, 0.34493087]], [[0.28653152, 0.3899072 ], [0.26457657, 0.38829359], [0.25383859, 0.36186254], ..., [0.28030779, 0.37430496], [0.26828482, 0.31673566], [0.28393244, 0.35594953]], [[0.27467408, 0.38342281], [0.26959904, 0.36621014], [0.25668544, 0.34485914], ..., [0.24950789, 0.35167792], [0.28294544, 0.33193336], [0.33513872, 0.33723406]]]], shape=(5, 4, 1000, 2)) - gamma_fourier(cv, chain, draw, geo, fourier_mode)float640.003653 -0.05713 ... 0.0066
array([[[[[ 3.65252462e-03, -5.71311405e-02, 6.42529632e-02, -7.49673331e-03], [-5.46315230e-03, -3.93753827e-02, 6.36741136e-02, -9.11218416e-03]], [[ 3.47016382e-03, -4.92510451e-02, 5.01928014e-02, 5.74943585e-03], [ 2.96957027e-03, -4.36804681e-02, 7.14380871e-02, 4.45855369e-03]], [[ 7.35183733e-03, -5.34913821e-02, 6.78065445e-02, -1.88893879e-03], [ 5.93595602e-03, -4.36732155e-02, 7.31182900e-02, -5.06911900e-03]], ..., [[ 1.51338758e-03, -5.09202991e-02, 6.53399805e-02, 2.62345486e-03], [ 2.89259453e-03, -4.43968097e-02, 6.77543724e-02, ... -6.43950331e-03], [ 1.95028355e-03, -3.59247012e-02, 6.85324221e-02, 5.93130499e-03]], ..., [[-3.73876356e-03, -5.96864828e-02, 5.30854476e-02, 4.76954573e-03], [ 1.27505620e-02, -4.49946590e-02, 6.35724943e-02, 6.79508915e-03]], [[ 4.12997319e-03, -4.95418788e-02, 7.32615881e-02, -2.07715836e-03], [-9.26096060e-03, -3.81238920e-02, 6.84638198e-02, -8.97910132e-05]], [[-1.55850249e-03, -5.69187538e-02, 5.68372750e-02, 3.27473510e-03], [ 1.18008040e-02, -4.01684568e-02, 6.45063767e-02, 6.59970010e-03]]]]], shape=(5, 4, 1000, 2, 4)) - gamma_fourier_b(cv, chain, draw)float640.03351 0.02713 ... 0.04233 0.03307
array([[[0.03351499, 0.02713026, 0.02365852, ..., 0.06948303, 0.0245047 , 0.04605857], [0.0851759 , 0.05847272, 0.02592588, ..., 0.03910813, 0.02441447, 0.04743625], [0.0804257 , 0.0714399 , 0.03417334, ..., 0.06038488, 0.019511 , 0.08053822], [0.06323917, 0.05796836, 0.03793348, ..., 0.02775156, 0.05320534, 0.03621248]], [[0.02692054, 0.03381844, 0.02458603, ..., 0.0695628 , 0.02388464, 0.04863942], [0.07426846, 0.05311142, 0.02390257, ..., 0.03622358, 0.02401382, 0.04837806], [0.08336429, 0.07637101, 0.04251464, ..., 0.06107236, 0.02542257, 0.04462486], [0.0635579 , 0.05773814, 0.03614687, ..., 0.05282078, 0.04396785, 0.03384969]], [[0.0417132 , 0.02386167, 0.02763641, ..., 0.06787462, 0.02122724, 0.06326576], ... [0.0663646 , 0.05935428, 0.03364444, ..., 0.02719966, 0.02832968, 0.03683609]], [[0.05376151, 0.02350701, 0.02419659, ..., 0.06943984, 0.0241499 , 0.04813558], [0.08838612, 0.03123362, 0.0207406 , ..., 0.03603498, 0.02414733, 0.04749766], [0.09892097, 0.08711223, 0.03732019, ..., 0.04435051, 0.02466366, 0.05839157], [0.0660961 , 0.05931837, 0.03436468, ..., 0.02757116, 0.05101732, 0.04874198]], [[0.02388387, 0.03422822, 0.02455969, ..., 0.06931292, 0.02491759, 0.04468957], [0.08816609, 0.02620906, 0.02089643, ..., 0.03549548, 0.05929974, 0.02275469], [0.05129879, 0.04639151, 0.02848757, ..., 0.06045169, 0.01949241, 0.07954867], [0.0683777 , 0.06121374, 0.03410636, ..., 0.05350144, 0.04233306, 0.03307101]]], shape=(5, 4, 1000)) - intercept_contribution(cv, chain, draw, geo)float640.3226 0.3497 0.35 ... 0.352 0.3704
array([[[[0.32262789, 0.34973078], [0.35000484, 0.35670447], [0.36578111, 0.36925189], ..., [0.317094 , 0.32366679], [0.3515733 , 0.35175898], [0.33999757, 0.33299427]], [[0.34718631, 0.33914654], [0.3153849 , 0.32547431], [0.33064359, 0.31776514], ..., [0.36047982, 0.35113596], [0.34424458, 0.34641801], [0.34769392, 0.34296773]], [[0.33295072, 0.33604038], [0.34401021, 0.33460386], [0.34707128, 0.34228429], ..., ... ..., [0.35028852, 0.35875351], [0.34414738, 0.35963582], [0.33215975, 0.33775891]], [[0.3337388 , 0.33118553], [0.33812816, 0.33217931], [0.3383587 , 0.33729007], ..., [0.34511827, 0.36261049], [0.33056642, 0.33349982], [0.34213806, 0.33129525]], [[0.33270752, 0.33878622], [0.33974855, 0.33287299], [0.32351794, 0.31878839], ..., [0.35323458, 0.36021556], [0.37391953, 0.3496359 ], [0.35198855, 0.37035805]]]], shape=(5, 4, 1000, 2)) - saturation_beta(cv, chain, draw, channel)float640.3618 0.422 ... 0.3601 0.2296
array([[[[0.36176831, 0.42204992], [0.4205071 , 0.41234722], [0.3827712 , 0.48428153], ..., [0.37001823, 0.35874602], [0.35127759, 0.25545118], [0.38940623, 0.32090791]], [[0.3502324 , 0.26166121], [0.38133173, 0.24828411], [0.35660695, 0.23702216], ..., [0.34562495, 0.40306809], [0.34534141, 0.34161359], [0.3854145 , 0.23406364]], [[0.35921879, 0.25903458], [0.36849961, 0.25260598], [0.3841936 , 0.27353894], ..., ... ..., [0.34887428, 0.39716129], [0.37098986, 0.38398452], [0.37343225, 0.22255648]], [[0.38622267, 0.33810123], [0.39162556, 0.3180032 ], [0.38469106, 0.32854532], ..., [0.38630486, 0.24041892], [0.36122451, 0.23340359], [0.39489696, 0.3253181 ]], [[0.39794222, 0.24756556], [0.38770596, 0.24234835], [0.34915379, 0.32655903], ..., [0.36982443, 0.25901685], [0.35370109, 0.21194738], [0.36008219, 0.22962424]]]], shape=(5, 4, 1000, 2)) - saturation_lam(cv, chain, draw, channel)float644.34 1.43 3.361 ... 4.066 3.482
array([[[[4.33987722, 1.42973688], [3.36075997, 1.54800863], [3.38256309, 1.05511314], ..., [4.69262419, 1.79934599], [4.25895464, 2.35177314], [4.41989231, 1.81591388]], [[4.76083423, 2.62299658], [4.67368684, 2.57135253], [5.11168708, 3.45753466], ..., [4.58791984, 1.45325055], [4.75840363, 1.82171005], [4.0749773 , 3.35903639]], [[4.97448734, 2.54144497], [4.75852932, 3.20429159], [4.38786362, 1.95341358], ..., ... ..., [4.66570159, 1.40041127], [4.06770018, 1.51406361], [4.44151359, 3.59243253]], [[4.38615622, 1.83033187], [4.23937759, 2.25931673], [4.32819707, 1.58202015], ..., [3.68846915, 2.84620508], [5.10620825, 3.35877512], [3.79623122, 1.81459147]], [[4.03781037, 2.66645245], [4.01042673, 3.1837764 ], [5.35616499, 1.91249823], ..., [4.01286619, 2.56165255], [4.22365265, 3.86630846], [4.06629502, 3.48168085]]]], shape=(5, 4, 1000, 2)) - y_sigma(cv, chain, draw)float640.0488 0.04928 ... 0.04753 0.04954
array([[[0.04880475, 0.04927613, 0.04827272, ..., 0.05041457, 0.05326882, 0.04647069], [0.04626223, 0.04826376, 0.04551394, ..., 0.05188264, 0.05099424, 0.04708313], [0.04797538, 0.04795487, 0.04907561, ..., 0.05348446, 0.04664751, 0.05134995], [0.05402082, 0.05354318, 0.05018689, ..., 0.04838571, 0.04993636, 0.05036216]], [[0.05234365, 0.04765023, 0.04753269, ..., 0.05040341, 0.05320191, 0.04643201], [0.04624942, 0.0482033 , 0.04539504, ..., 0.0519093 , 0.05111289, 0.04690047], [0.04898594, 0.04889481, 0.04919402, ..., 0.05268034, 0.05111788, 0.04672468], [0.0520522 , 0.05163086, 0.04918669, ..., 0.05165875, 0.04814493, 0.0493774 ]], [[0.04738283, 0.05038885, 0.04824051, ..., 0.04983131, 0.05277254, 0.04618637], ... [0.05209531, 0.05165916, 0.04910395, ..., 0.04884397, 0.04886954, 0.05039748]], [[0.04679771, 0.05020055, 0.04824715, ..., 0.05012982, 0.0527117 , 0.0460646 ], [0.04636241, 0.05019036, 0.04648481, ..., 0.05173422, 0.05113654, 0.04663572], [0.04948028, 0.04929858, 0.04867719, ..., 0.05420684, 0.04566086, 0.05135747], [0.0512424 , 0.05077866, 0.04854884, ..., 0.04868477, 0.04962155, 0.04994919]], [[0.05181103, 0.04778451, 0.04737489, ..., 0.04989559, 0.0526926 , 0.0465057 ], [0.04640669, 0.04992476, 0.04602327, ..., 0.05169684, 0.04952334, 0.04743961], [0.04754229, 0.0475868 , 0.0490391 , ..., 0.05277448, 0.04641055, 0.0500772 ], [0.0508148 , 0.05047865, 0.04896442, ..., 0.05213768, 0.04752824, 0.04954252]]], shape=(5, 4, 1000)) - y_sigma_sigma(cv, chain, draw)float640.5951 0.8319 ... 2.218 0.3544
array([[[0.59505087, 0.83187621, 0.49563195, ..., 0.08887267, 0.11628508, 1.60853408], [0.11626848, 0.40206647, 0.24767541, ..., 0.24513313, 1.36545636, 0.2270191 ], [0.77103574, 0.43221551, 0.1870409 , ..., 0.22380941, 0.89215681, 0.29779132], [1.46330368, 0.61009609, 0.49842204, ..., 0.48682082, 1.5478996 , 0.83442825]], [[0.07467594, 0.27762579, 0.19191367, ..., 0.07987791, 0.11563749, 1.32381737], [0.05560014, 0.25557221, 0.1604034 , ..., 0.28260674, 1.59228382, 0.14365246], [2.67933388, 1.41809878, 0.47015807, ..., 0.1947062 , 1.13380427, 0.39294523], [1.43379096, 0.52256467, 0.4455496 , ..., 0.12606362, 2.19730391, 0.38088057]], [[1.01047855, 0.58946921, 0.33662089, ..., 0.07875021, 0.13201198, 0.46963215], ... [1.19411979, 0.44824192, 0.42364955, ..., 0.71654611, 0.85990273, 0.9691513 ]], [[0.58006744, 0.81336847, 0.4656495 , ..., 0.07693247, 0.1164405 , 1.17074142], [0.06292492, 0.90921922, 0.44843726, ..., 0.28200784, 1.60199815, 0.13860114], [1.91919165, 0.98142128, 0.33496957, ..., 0.27584571, 0.80469904, 0.37407638], [1.50118856, 0.49072827, 0.42064701, ..., 0.74480947, 0.50492956, 0.66174259]], [[0.04730006, 0.29130812, 0.20363695, ..., 0.0869137 , 0.11464515, 1.61108095], [0.14653147, 1.18263879, 0.50131346, ..., 0.2825934 , 0.03778098, 1.72541508], [0.16185844, 0.09794119, 0.06787752, ..., 0.21242491, 1.28302234, 0.2135296 ], [1.67325191, 0.57348196, 0.44831186, ..., 0.11268467, 2.21798803, 0.35440972]]], shape=(5, 4, 1000)) - channel_contribution(cv, chain, draw, date, geo, channel)float640.1387 0.0 ... 0.161 0.0008923
array([[[[[[0.13874457, 0. ], [0.13874457, 0. ]], [[0.1091701 , 0. ], [0.1091701 , 0. ]], [[0.16749299, 0. ], [0.16749299, 0. ]], ..., [[ nan, nan], [ nan, nan]], [[ nan, nan], [ nan, nan]], [[ nan, nan], [ nan, nan]]], ... [[[0.12580159, 0. ], [0.12580159, 0. ]], [[0.10125722, 0. ], [0.10125722, 0. ]], [[0.15538942, 0. ], [0.15538942, 0. ]], ..., [[0.19263386, 0.04204243], [0.19263386, 0.04204243]], [[0.22202801, 0.00615817], [0.22202801, 0.00615817]], [[0.16104894, 0.00089227], [0.16104894, 0.00089227]]]]]], shape=(5, 4, 1000, 167, 2, 2)) - channel_contribution_original_scale(cv, chain, draw, date, geo, channel)float641.153e+03 0.0 ... 1.359e+03 7.531
array([[[[[[1153.30141148, 0. ], [1171.0959855 , 0. ]], [[ 907.46636093, 0. ], [ 921.46788488, 0. ]], [[1392.27002132, 0. ], [1413.75170138, 0. ]], ..., [[ nan, nan], [ nan, nan]], [[ nan, nan], [ nan, nan]], [[ nan, nan], [ nan, nan]]], ... [[[1045.71408041, 0. ], [1061.84866276, 0. ]], [[ 841.69127372, 0. ], [ 854.6779375 , 0. ]], [[1291.66021466, 0. ], [1311.58956102, 0. ]], ..., [[1601.2511385 , 349.47378275], [1625.95724014, 354.86590058]], [[1845.5873254 , 51.18922608], [1874.06335078, 51.97903737]], [[1338.70439818, 7.41692255], [1359.35960094, 7.53136009]]]]]], shape=(5, 4, 1000, 167, 2, 2)) - control_contribution(cv, chain, draw, date, geo, control)float640.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
array([[[[[[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]], ..., [[nan, nan], [nan, nan]], [[nan, nan], [nan, nan]], [[nan, nan], [nan, nan]]], ... [[[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]], ..., [[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]]]]]], shape=(5, 4, 1000, 167, 2, 2)) - fourier_contribution(cv, chain, draw, date, geo, fourier_mode)float640.003652 0.001351 ... 0.004369
array([[[[[[ 3.65226918e-03, 1.35121587e-03, -7.59880646e-04, 7.49463627e-03], [-5.46277024e-03, 9.31272187e-04, -7.53034944e-04, 9.10963523e-03]], [[ 3.62063277e-03, 1.49349027e-02, -8.47230035e-03, 7.23604688e-03], [-5.41545104e-03, 1.02932920e-02, -8.39597410e-03, 8.79532311e-03]], [[ 3.53655970e-03, 2.76565294e-02, -1.60620180e-02, 6.55978431e-03], [-5.28970131e-03, 1.90611708e-02, -1.59173166e-02, 7.97333454e-03]], ..., [[ nan, nan, nan, nan], [ nan, nan, nan, ... -2.86545553e-03], [ 1.14261373e-02, 1.94450889e-02, -1.61253666e-02, -5.77486318e-03]], ..., [[-9.61005694e-04, 5.52614168e-02, -4.47457121e-02, 7.84484272e-04], [ 7.27662605e-03, 3.89988482e-02, -5.07832890e-02, 1.58100145e-03]], [[-8.06658305e-04, 5.04143585e-02, -4.86317620e-02, 1.52016635e-03], [ 6.10792514e-03, 3.55782031e-02, -5.51936870e-02, 3.06364994e-03]], [[-6.40628299e-04, 4.26573238e-02, -5.18134912e-02, 2.16810263e-03], [ 4.85076478e-03, 3.01039421e-02, -5.88047295e-02, 4.36946094e-03]]]]]], shape=(5, 4, 1000, 167, 2, 4)) - intercept_contribution_original_scale(cv, chain, draw, geo)float642.682e+03 2.952e+03 ... 3.126e+03
array([[[[2681.8145029 , 2951.95920088], [2909.38283403, 3010.82179212], [3040.52167848, 3116.73031496], ..., [2635.81456467, 2731.96188151], [2922.42052409, 2969.07856456], [2826.198377 , 2810.69196175]], [[2885.95414377, 2862.6211946 ], [2621.60781084, 2747.21856542], [2748.44426593, 2682.14802635], ..., [2996.45519444, 2963.81988021], [2861.50128242, 2923.99725443], [2890.17355244, 2894.87461861]], [[2767.62211805, 2836.40315846], [2859.55306204, 2824.27803745], [2884.99796415, 2889.10592197], ..., ... ..., [2911.74095755, 3028.11699161], [2860.69327072, 3035.56434383], [2761.04720795, 2850.90872242]], [[2774.17290971, 2795.42499465], [2810.6590388 , 2803.81317706], [2812.575418 , 2846.95139096], ..., [2868.76374471, 3060.67252532], [2747.80280739, 2814.95915165], [2843.99102893, 2796.35117794]], [[2765.60046785, 2859.57985094], [2824.12841452, 2809.66827221], [2689.21295342, 2690.78497422], ..., [2936.22981689, 3040.45765943], [3108.17153448, 2951.15837421], [2925.87225619, 3126.06698632]]]], shape=(5, 4, 1000, 2)) - total_media_contribution_original_scale(cv, chain, draw)float646.762e+05 6.62e+05 ... 6.617e+05
array([[[676178.54283157, 661968.30749196, 595821.82096794, ..., 717736.87917327, 631246.90896133, 718815.94597544], [684497.57882966, 720366.10901319, 733308.40912711, ..., 663797.00453303, 677012.4187424 , 688062.39081451], [719444.99134159, 736023.50885561, 689489.54460343, ..., 633124.75936241, 717757.58289099, 665778.32227228], [668689.46847075, 664958.18771192, 714552.6543739 , ..., 660260.4907801 , 645195.85725535, 625676.38404602]], [[711474.0929889 , 641901.48883039, 623652.78794985, ..., 728852.13832454, 642428.5509081 , 726672.90427323], [607176.07381092, 680801.39149286, 692453.19482348, ..., 676280.5529463 , 690080.85463076, 687063.5372999 ], [716213.82339628, 712644.81421413, 691203.34945066, ..., 621877.60350179, 652059.27150788, 681689.77230427], [676476.59274678, 669438.532267 , 725602.0485389 , ..., 657626.09922326, 645438.56149128, 649310.12210004]], [[769053.68727365, 645502.97059134, 635285.70700968, ..., 749842.2417297 , 634384.43350447, 755533.92273261], ... 687476.64045233, 692722.15999908, 683611.59178876]], [[732752.6433851 , 645163.43508479, 632186.51483825, ..., 732765.00802039, 643948.64065408, 746330.43536057], [719814.1124487 , 796478.08822777, 793455.79859118, ..., 681537.35513842, 698565.69576034, 698781.13733037], [742275.36816464, 723251.46787617, 710950.18068292, ..., 661461.01204864, 744117.13693864, 666169.12451897], [690055.89132416, 679754.14433737, 723609.90826026, ..., 697978.85255696, 649736.84517567, 653847.4086718 ]], [[642685.18256975, 618381.0170418 , 593733.28112828, ..., 736910.4480302 , 653208.21396943, 731333.34264555], [697598.60394234, 791206.07472918, 795378.00365816, ..., 684378.40134935, 675712.6810269 , 718664.9252126 ], [737287.70661452, 747149.39347888, 705003.97786204, ..., 657565.44439328, 751624.22814879, 680432.22389927], [711101.42625082, 703682.02249788, 743036.43843707, ..., 668997.45878019, 661274.46630141, 661727.64795438]]], shape=(5, 4, 1000)) - trend_effect_contribution(cv, chain, draw, date, geo)float640.0 0.0 ... 0.1026 0.08242
array([[[[[ 0.00000000e+00, 0.00000000e+00], [ 8.58272711e-04, 5.64152560e-04], [ 1.71654542e-03, 1.12830512e-03], ..., [ nan, nan], [ nan, nan], [ nan, nan]], [[ 0.00000000e+00, 0.00000000e+00], [ 4.09309487e-04, 3.90684870e-04], [ 8.18618974e-04, 7.81369739e-04], ..., [ nan, nan], [ nan, nan], [ nan, nan]], [[ 0.00000000e+00, 0.00000000e+00], [ 9.19671223e-04, 4.57017796e-04], [ 1.83934245e-03, 9.14035592e-04], ..., ... [ 1.04430714e-01, 8.78615202e-02], [ 1.05006593e-01, 8.88497825e-02], [ 1.05582472e-01, 8.98380448e-02]], [[ 0.00000000e+00, 0.00000000e+00], [-1.54589885e-04, 7.27147057e-04], [-3.09179770e-04, 1.45429411e-03], ..., [ 6.50645654e-02, 1.08963182e-01], [ 6.54035897e-02, 1.09466053e-01], [ 6.57426141e-02, 1.09968923e-01]], [[ 0.00000000e+00, 0.00000000e+00], [ 4.13190666e-04, 4.97396693e-04], [ 8.26381333e-04, 9.94793387e-04], ..., [ 1.00952606e-01, 8.06508413e-02], [ 1.01758203e-01, 8.15374950e-02], [ 1.02563801e-01, 8.24241487e-02]]]]], shape=(5, 4, 1000, 167, 2)) - y_original_scale(cv, chain, draw, date, geo)float644.121e+03 4.33e+03 ... 4.945e+03
array([[[[[4121.34883755, 4330.21835751], [3574.15768398, 4471.03787967], [3807.26956845, 4757.37000913], ..., [ nan, nan], [ nan, nan], [ nan, nan]], [[3939.82753952, 4594.66956952], [3175.51815617, 3835.22557224], [3963.13312059, 5646.9787782 ], ..., [ nan, nan], [ nan, nan], [ nan, nan]], [[3754.96774279, 4311.41758831], [3836.35447743, 3813.73605444], [4159.87241688, 5000.08063675], ..., ... ..., [6061.67255512, 6489.23976264], [6628.18530823, 5610.52386365], [5262.31177327, 5761.99566343]], [[4605.21069729, 4165.43772972], [4176.13965357, 3818.25031592], [4930.9633056 , 5120.21870608], ..., [6063.48019018, 5988.88391573], [5167.65125122, 6300.79775106], [4851.08384664, 4847.65060441]], [[3348.11063121, 4307.74419376], [3896.52132474, 3876.18197705], [4360.19815778, 3905.0811449 ], ..., [5061.3846241 , 6285.27536133], [5543.43557479, 5904.50646437], [4948.2608629 , 4945.24463465]]]]], shape=(5, 4, 1000, 167, 2)) - yearly_seasonality_contribution(cv, chain, draw, date, geo)float640.01174 0.003825 ... -0.01948
array([[[[[ 1.17382407e-02, 3.82510224e-03], [ 1.73192820e-02, 5.27718996e-03], [ 2.16908554e-02, 5.82748743e-03], ..., [ nan, nan], [ nan, nan], [ nan, nan]], [[-1.70666339e-03, -1.29970633e-03], [ 4.14693949e-03, 6.39109876e-04], [ 9.62374339e-03, 2.26102032e-03], ..., [ nan, nan], [ nan, nan], [ nan, nan]], [[ 9.70295839e-03, 1.11714372e-02], [ 1.41534464e-02, 1.25525135e-02], [ 1.77154978e-02, 1.30465908e-02], ..., ... [ 1.49936829e-02, 3.12651740e-03], [ 7.72316802e-03, -4.78787940e-03], [-2.04076792e-03, -1.44925011e-02]], [[ 6.51156280e-03, -9.07855390e-03], [ 9.38963734e-03, -8.15483362e-03], [ 1.14850548e-02, -7.54767667e-03], ..., [-7.52754563e-03, -2.26170241e-02], [-1.76310693e-02, -2.96475396e-02], [-2.93348785e-02, -3.77069203e-02]], [[-4.15819969e-03, 5.38927637e-03], [ 2.67914693e-03, 7.32245717e-03], [ 8.97100155e-03, 8.97099640e-03], ..., [ 1.03391833e-02, -2.92681336e-03], [ 2.49610453e-03, -1.04439088e-02], [-7.62869302e-03, -1.94805617e-02]]]]], shape=(5, 4, 1000, 167, 2))
- created_at :
- 2025-12-20T13:44:59.248841+00:00
- arviz_version :
- 0.22.0
- inference_library :
- numpyro
- inference_library_version :
- 0.19.0
- sampling_time :
- 7.597176
- tuning_steps :
- 1000
- pymc_marketing_version :
- 0.17.1
<xarray.Dataset> Size: 700MB Dimensions: (cv: 5, chain: 4, draw: 1000, channel: 2, changepoint: 5, geo: 2, control: 2, fourier_mode: 4, date: 167) Coordinates: * cv (cv) object 40B 'Iteration 0' ..... * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 8kB 0 1 2 ... 998 999 * channel (channel) <U2 16B 'x1' 'x2' * changepoint (changepoint) int64 40B 0 1 2 3 4 * geo (geo) <U5 40B 'geo_a' 'geo_b' * control (control) <U7 56B 'event_1' 'eve... * fourier_mode (fourier_mode) <U5 80B 'sin_1' .... * date (date) datetime64[ns] 1kB 2018-0... Data variables: (12/20) adstock_alpha (cv, chain, draw, channel) float64 320kB ... delta (cv, chain, draw, changepoint, geo) float64 2MB ... delta_b (cv, chain, draw) float64 160kB ... gamma_control (cv, chain, draw, control) float64 320kB ... gamma_fourier (cv, chain, draw, geo, fourier_mode) float64 1MB ... gamma_fourier_b (cv, chain, draw) float64 160kB ... ... ... fourier_contribution (cv, chain, draw, date, geo, fourier_mode) float64 214MB ... intercept_contribution_original_scale (cv, chain, draw, geo) float64 320kB ... total_media_contribution_original_scale (cv, chain, draw) float64 160kB ... trend_effect_contribution (cv, chain, draw, date, geo) float64 53MB ... y_original_scale (cv, chain, draw, date, geo) float64 53MB ... yearly_seasonality_contribution (cv, chain, draw, date, geo) float64 53MB ... Attributes: created_at: 2025-12-20T13:44:59.248841+00:00 arviz_version: 0.22.0 inference_library: numpyro inference_library_version: 0.19.0 sampling_time: 7.597176 tuning_steps: 1000 pymc_marketing_version: 0.17.1xarray.Dataset -
- cv: 5
- chain: 4
- draw: 1000
- date: 179
- geo: 2
- cv(cv)object'Iteration 0' ... 'Iteration 4'
array(['Iteration 0', 'Iteration 1', 'Iteration 2', 'Iteration 3', 'Iteration 4'], dtype=object) - chain(chain)int640 1 2 3
array([0, 1, 2, 3])
- draw(draw)int640 1 2 3 4 5 ... 995 996 997 998 999
array([ 0, 1, 2, ..., 997, 998, 999], shape=(1000,))
- date(date)datetime64[ns]2018-04-02 ... 2021-08-30
array(['2018-04-02T00:00:00.000000000', '2018-04-09T00:00:00.000000000', '2018-04-16T00:00:00.000000000', '2018-04-23T00:00:00.000000000', '2018-04-30T00:00:00.000000000', '2018-05-07T00:00:00.000000000', '2018-05-14T00:00:00.000000000', '2018-05-21T00:00:00.000000000', '2018-05-28T00:00:00.000000000', '2018-06-04T00:00:00.000000000', '2018-06-11T00:00:00.000000000', '2018-06-18T00:00:00.000000000', '2018-06-25T00:00:00.000000000', '2018-07-02T00:00:00.000000000', '2018-07-09T00:00:00.000000000', '2018-07-16T00:00:00.000000000', '2018-07-23T00:00:00.000000000', '2018-07-30T00:00:00.000000000', '2018-08-06T00:00:00.000000000', '2018-08-13T00:00:00.000000000', '2018-08-20T00:00:00.000000000', '2018-08-27T00:00:00.000000000', '2018-09-03T00:00:00.000000000', '2018-09-10T00:00:00.000000000', '2018-09-17T00:00:00.000000000', '2018-09-24T00:00:00.000000000', '2018-10-01T00:00:00.000000000', '2018-10-08T00:00:00.000000000', '2018-10-15T00:00:00.000000000', '2018-10-22T00:00:00.000000000', '2018-10-29T00:00:00.000000000', '2018-11-05T00:00:00.000000000', '2018-11-12T00:00:00.000000000', '2018-11-19T00:00:00.000000000', '2018-11-26T00:00:00.000000000', '2018-12-03T00:00:00.000000000', '2018-12-10T00:00:00.000000000', '2018-12-17T00:00:00.000000000', '2018-12-24T00:00:00.000000000', '2018-12-31T00:00:00.000000000', '2019-01-07T00:00:00.000000000', '2019-01-14T00:00:00.000000000', '2019-01-21T00:00:00.000000000', '2019-01-28T00:00:00.000000000', '2019-02-04T00:00:00.000000000', '2019-02-11T00:00:00.000000000', '2019-02-18T00:00:00.000000000', '2019-02-25T00:00:00.000000000', '2019-03-04T00:00:00.000000000', '2019-03-11T00:00:00.000000000', '2019-03-18T00:00:00.000000000', '2019-03-25T00:00:00.000000000', '2019-04-01T00:00:00.000000000', '2019-04-08T00:00:00.000000000', '2019-04-15T00:00:00.000000000', '2019-04-22T00:00:00.000000000', '2019-04-29T00:00:00.000000000', '2019-05-06T00:00:00.000000000', '2019-05-13T00:00:00.000000000', '2019-05-20T00:00:00.000000000', '2019-05-27T00:00:00.000000000', '2019-06-03T00:00:00.000000000', '2019-06-10T00:00:00.000000000', '2019-06-17T00:00:00.000000000', '2019-06-24T00:00:00.000000000', '2019-07-01T00:00:00.000000000', '2019-07-08T00:00:00.000000000', '2019-07-15T00:00:00.000000000', '2019-07-22T00:00:00.000000000', '2019-07-29T00:00:00.000000000', '2019-08-05T00:00:00.000000000', '2019-08-12T00:00:00.000000000', '2019-08-19T00:00:00.000000000', '2019-08-26T00:00:00.000000000', '2019-09-02T00:00:00.000000000', '2019-09-09T00:00:00.000000000', '2019-09-16T00:00:00.000000000', '2019-09-23T00:00:00.000000000', '2019-09-30T00:00:00.000000000', '2019-10-07T00:00:00.000000000', '2019-10-14T00:00:00.000000000', '2019-10-21T00:00:00.000000000', '2019-10-28T00:00:00.000000000', '2019-11-04T00:00:00.000000000', '2019-11-11T00:00:00.000000000', '2019-11-18T00:00:00.000000000', '2019-11-25T00:00:00.000000000', '2019-12-02T00:00:00.000000000', '2019-12-09T00:00:00.000000000', '2019-12-16T00:00:00.000000000', '2019-12-23T00:00:00.000000000', '2019-12-30T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-13T00:00:00.000000000', '2020-01-20T00:00:00.000000000', '2020-01-27T00:00:00.000000000', '2020-02-03T00:00:00.000000000', '2020-02-10T00:00:00.000000000', '2020-02-17T00:00:00.000000000', '2020-02-24T00:00:00.000000000', '2020-03-02T00:00:00.000000000', '2020-03-09T00:00:00.000000000', '2020-03-16T00:00:00.000000000', '2020-03-23T00:00:00.000000000', '2020-03-30T00:00:00.000000000', '2020-04-06T00:00:00.000000000', '2020-04-13T00:00:00.000000000', '2020-04-20T00:00:00.000000000', '2020-04-27T00:00:00.000000000', '2020-05-04T00:00:00.000000000', '2020-05-11T00:00:00.000000000', '2020-05-18T00:00:00.000000000', '2020-05-25T00:00:00.000000000', '2020-06-01T00:00:00.000000000', '2020-06-08T00:00:00.000000000', '2020-06-15T00:00:00.000000000', '2020-06-22T00:00:00.000000000', '2020-06-29T00:00:00.000000000', '2020-07-06T00:00:00.000000000', '2020-07-13T00:00:00.000000000', '2020-07-20T00:00:00.000000000', '2020-07-27T00:00:00.000000000', '2020-08-03T00:00:00.000000000', '2020-08-10T00:00:00.000000000', '2020-08-17T00:00:00.000000000', '2020-08-24T00:00:00.000000000', '2020-08-31T00:00:00.000000000', '2020-09-07T00:00:00.000000000', '2020-09-14T00:00:00.000000000', '2020-09-21T00:00:00.000000000', '2020-09-28T00:00:00.000000000', '2020-10-05T00:00:00.000000000', '2020-10-12T00:00:00.000000000', '2020-10-19T00:00:00.000000000', '2020-10-26T00:00:00.000000000', '2020-11-02T00:00:00.000000000', '2020-11-09T00:00:00.000000000', '2020-11-16T00:00:00.000000000', '2020-11-23T00:00:00.000000000', '2020-11-30T00:00:00.000000000', '2020-12-07T00:00:00.000000000', '2020-12-14T00:00:00.000000000', '2020-12-21T00:00:00.000000000', '2020-12-28T00:00:00.000000000', '2021-01-04T00:00:00.000000000', '2021-01-11T00:00:00.000000000', '2021-01-18T00:00:00.000000000', '2021-01-25T00:00:00.000000000', '2021-02-01T00:00:00.000000000', '2021-02-08T00:00:00.000000000', '2021-02-15T00:00:00.000000000', '2021-02-22T00:00:00.000000000', '2021-03-01T00:00:00.000000000', '2021-03-08T00:00:00.000000000', '2021-03-15T00:00:00.000000000', '2021-03-22T00:00:00.000000000', '2021-03-29T00:00:00.000000000', '2021-04-05T00:00:00.000000000', '2021-04-12T00:00:00.000000000', '2021-04-19T00:00:00.000000000', '2021-04-26T00:00:00.000000000', '2021-05-03T00:00:00.000000000', '2021-05-10T00:00:00.000000000', '2021-05-17T00:00:00.000000000', '2021-05-24T00:00:00.000000000', '2021-05-31T00:00:00.000000000', '2021-06-07T00:00:00.000000000', '2021-06-14T00:00:00.000000000', '2021-06-21T00:00:00.000000000', '2021-06-28T00:00:00.000000000', '2021-07-05T00:00:00.000000000', '2021-07-12T00:00:00.000000000', '2021-07-19T00:00:00.000000000', '2021-07-26T00:00:00.000000000', '2021-08-02T00:00:00.000000000', '2021-08-09T00:00:00.000000000', '2021-08-16T00:00:00.000000000', '2021-08-23T00:00:00.000000000', '2021-08-30T00:00:00.000000000'], dtype='datetime64[ns]') - geo(geo)<U5'geo_a' 'geo_b'
array(['geo_a', 'geo_b'], dtype='<U5')
- y(cv, chain, draw, date, geo)float640.4308 0.5239 ... 0.5558 0.5632
array([[[[[0.4307713 , 0.52388293], [0.37174158, 0.4488783 ], [0.48197782, 0.45361393], ..., [ nan, nan], [ nan, nan], [ nan, nan]], [[0.49263428, 0.55627241], [0.3904802 , 0.37261217], [0.49866476, 0.5048954 ], ..., [ nan, nan], [ nan, nan], [ nan, nan]], [[0.47360698, 0.43776596], [0.45768838, 0.49040785], [0.56848029, 0.45622115], ..., ... ..., [0.51951252, 0.47233614], [0.58045841, 0.51024482], [0.61453028, 0.57422596]], [[0.4719071 , 0.49506741], [0.49997466, 0.381155 ], [0.61920875, 0.49694687], ..., [0.55602577, 0.58348539], [0.49765824, 0.61206758], [0.57837991, 0.62295927]], [[0.5209076 , 0.58837697], [0.43141374, 0.42276016], [0.47713272, 0.54838603], ..., [0.5267498 , 0.59395005], [0.54518599, 0.50038281], [0.55575075, 0.56322589]]]]], shape=(5, 4, 1000, 179, 2)) - y_original_scale(cv, chain, draw, date, geo)float643.581e+03 4.422e+03 ... 4.754e+03
array([[[[[3580.74663961, 4421.91861362], [3090.06753362, 3788.82988758], [4006.39610304, 3828.80177435], ..., [ nan, nan], [ nan, nan], [ nan, nan]], [[4094.97689111, 4695.30727741], [3245.83053801, 3145.09331233], [4145.10472713, 4261.65126966], ..., [ nan, nan], [ nan, nan], [ nan, nan]], [[3936.81422355, 3695.03437247], [3804.49230172, 4139.36674729], [4725.439886 , 3850.80836679], ..., ... ..., [4318.39975017, 3986.82961837], [4825.00688634, 4306.80396649], [5108.22611236, 4846.84708273]], [[3922.68417496, 4178.69654094], [4155.99310317, 3217.20038812], [5147.11544413, 4194.56040833], ..., [4621.91284177, 4925.00277195], [4136.73814123, 5166.25539281], [4807.72956029, 5258.18847887]], [[4329.99627307, 4966.2909558 ], [3586.08682842, 3568.37555047], [3966.12166263, 4628.74095653], ..., [4378.55900434, 5013.33146548], [4531.80816288, 4223.56201795], [4619.62669043, 4753.99920196]]]]], shape=(5, 4, 1000, 179, 2))
- created_at :
- 2025-12-20T13:45:01.510622+00:00
- arviz_version :
- 0.22.0
- inference_library :
- pymc
- inference_library_version :
- 5.26.1
<xarray.Dataset> Size: 115MB Dimensions: (cv: 5, chain: 4, draw: 1000, date: 179, geo: 2) Coordinates: * cv (cv) object 40B 'Iteration 0' ... 'Iteration 4' * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 8kB 0 1 2 3 4 5 6 ... 994 995 996 997 998 999 * date (date) datetime64[ns] 1kB 2018-04-02 ... 2021-08-30 * geo (geo) <U5 40B 'geo_a' 'geo_b' Data variables: y (cv, chain, draw, date, geo) float64 57MB 0.4308 ... 0.... y_original_scale (cv, chain, draw, date, geo) float64 57MB 3.581e+03 ...... Attributes: created_at: 2025-12-20T13:45:01.510622+00:00 arviz_version: 0.22.0 inference_library: pymc inference_library_version: 5.26.1xarray.Dataset -
- cv: 5
- chain: 4
- draw: 1000
- cv(cv)object'Iteration 0' ... 'Iteration 4'
array(['Iteration 0', 'Iteration 1', 'Iteration 2', 'Iteration 3', 'Iteration 4'], dtype=object) - chain(chain)int640 1 2 3
array([0, 1, 2, 3])
- draw(draw)int640 1 2 3 4 5 ... 995 996 997 998 999
array([ 0, 1, 2, ..., 997, 998, 999], shape=(1000,))
- acceptance_rate(cv, chain, draw)float640.9825 0.989 0.9689 ... 0.9515 1.0
array([[[0.98253011, 0.98895557, 0.96891632, ..., 0.90198874, 0.99981598, 0.9307043 ], [0.82440278, 0.94080564, 0.97175921, ..., 0.94567025, 0.91230785, 0.98810104], [0.96596116, 0.89356686, 0.73120088, ..., 0.57168259, 0.95788537, 0.84472846], [0.983041 , 0.97075848, 0.92009411, ..., 0.77149627, 0.98570297, 0.97924849]], [[0.94054964, 0.9132495 , 0.91443664, ..., 0.76706303, 0.96388948, 0.91215862], [0.99418788, 0.99821014, 0.99302294, ..., 0.80363562, 0.81824201, 0.95573461], [0.92953036, 0.95337153, 0.80715576, ..., 0.8645125 , 0.60167578, 0.87821333], [0.95948647, 0.94742134, 0.89631988, ..., 0.62507249, 0.91464233, 0.95068185]], [[0.97304278, 0.73763267, 0.94270685, ..., 0.86315485, 0.99381834, 0.84725491], ... [0.9830564 , 0.99011329, 0.92389899, ..., 0.9274681 , 0.75943914, 0.76246183]], [[0.99884014, 0.95493776, 0.95964229, ..., 0.80916917, 0.9985046 , 0.90472863], [0.99495847, 0.9889942 , 0.98220087, ..., 0.68959622, 0.9705775 , 0.82478417], [0.99881971, 0.96076751, 0.88254336, ..., 0.97751867, 0.86014712, 0.9477557 ], [0.93544229, 0.946607 , 0.88112677, ..., 0.90297626, 0.97686048, 0.61560633]], [[0.64607339, 0.85712974, 0.90068445, ..., 0.77815079, 0.9922976 , 0.94980147], [0.99806176, 0.93880722, 0.98301169, ..., 0.81989424, 0.76838644, 0.94742405], [0.99356969, 0.99114481, 0.78063286, ..., 0.81280023, 0.92836444, 0.97539396], [0.89510356, 0.97474012, 0.88017786, ..., 0.9644882 , 0.95152967, 0.9999973 ]]], shape=(5, 4, 1000)) - diverging(cv, chain, draw)boolFalse False False ... False False
array([[[False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False]], [[False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False]], [[False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False]], [[False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False]], [[False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False]]], shape=(5, 4, 1000)) - energy(cv, chain, draw)float64-506.9 -507.3 ... -531.1 -528.7
array([[[-506.90110851, -507.28717581, -507.7360191 , ..., -507.74049207, -504.51709748, -508.40481472], [-511.77273446, -519.78842374, -520.74233096, ..., -519.75898651, -519.23948975, -523.27931771], [-514.69183361, -514.38633162, -520.10148496, ..., -519.82778834, -517.13196036, -520.44520898], [-498.78994368, -510.73214223, -503.7049241 , ..., -509.37685776, -517.60137264, -519.04491077]], [[-518.8920462 , -518.65283704, -519.51454788, ..., -510.24714486, -507.30880844, -511.31268212], [-513.21053745, -518.67943035, -522.44883731, ..., -525.22305659, -525.10133658, -528.9742027 ], [-519.61421765, -515.36262943, -521.18368495, ..., -520.36531828, -522.43450805, -521.72365481], [-502.81448177, -515.31134477, -508.57413567, ..., -512.77313625, -517.03716355, -514.31892421]], [[-523.27723023, -513.26753785, -522.10512865, ..., -521.74959787, -517.72089601, -519.79505076], ... -514.86568856, -523.9389524 , -520.79251822]], [[-517.03929954, -514.85801863, -523.01762164, ..., -521.05483754, -519.48228079, -522.91983419], [-522.25238667, -532.5189758 , -529.66107939, ..., -533.12212838, -532.49591048, -537.14204715], [-524.99130761, -520.3905839 , -533.75082163, ..., -523.70206218, -525.3505601 , -532.19667862], [-512.45064122, -523.50069892, -517.50079981, ..., -521.5611811 , -529.31464226, -527.17720979]], [[-528.41864396, -529.10344267, -531.74544431, ..., -522.1196183 , -520.93680713, -522.53974433], [-524.06279646, -539.95625818, -534.75637656, ..., -536.68268699, -536.00587268, -542.78628359], [-524.81340993, -526.74274806, -531.54970255, ..., -533.76266465, -535.24890428, -541.36209768], [-523.78615355, -528.42118633, -522.29480014, ..., -525.7467049 , -531.12328544, -528.70366994]]], shape=(5, 4, 1000)) - lp(cv, chain, draw)float64-527.1 -523.7 ... -541.9 -544.4
array([[[-527.08504757, -523.69372577, -529.30521206, ..., -524.66908369, -523.79359817, -525.76008859], [-530.61316484, -537.52639737, -530.54634019, ..., -532.03283238, -531.40473525, -531.24401399], [-532.28898788, -532.11209867, -534.71212882, ..., -532.09276395, -534.83865983, -529.49738587], [-521.23895798, -523.80017436, -514.04847182, ..., -528.53542393, -532.38153354, -534.01154518]], [[-539.3519423 , -535.48044951, -536.17727687, ..., -527.59782481, -526.66323874, -527.9407398 ], [-529.43597772, -538.99256666, -535.37012884, ..., -537.87306887, -537.59729529, -537.95044895], [-533.34312424, -533.1373301 , -542.97421845, ..., -538.25425126, -535.49325149, -531.45555009], [-525.80541401, -528.54172879, -524.44580132, ..., -528.22154197, -528.01470842, -531.17132659]], [[-535.32894836, -538.03856231, -537.82625214, ..., -538.05106941, -534.88433472, -536.58318374], ... -535.07170677, -534.77393504, -539.46190952]], [[-535.11271357, -538.78866237, -539.83564402, ..., -539.74624578, -538.13571461, -540.34087032], [-543.10897225, -545.90703769, -544.63180682, ..., -545.05358228, -546.57673824, -548.84823354], [-538.37243108, -545.54748429, -546.41956461, ..., -540.78117202, -545.66469791, -541.76506891], [-533.98944364, -537.58913887, -530.14039646, ..., -540.09428499, -541.04567119, -543.16175887]], [[-549.37003321, -546.77017554, -550.53991803, ..., -541.43127903, -538.18188742, -536.86676945], [-550.65696273, -551.38657717, -548.13305025, ..., -549.18075684, -551.28487977, -557.30792743], [-544.30229045, -543.52950501, -550.47644311, ..., -550.84529391, -554.62506646, -551.95828758], [-538.84754522, -542.37848318, -535.69566661, ..., -542.34521068, -541.89068355, -544.3707521 ]]], shape=(5, 4, 1000)) - n_steps(cv, chain, draw)int6463 63 63 63 63 ... 63 63 63 63 63
array([[[ 63, 63, 63, ..., 63, 127, 63], [ 63, 63, 63, ..., 63, 63, 63], [ 63, 63, 63, ..., 63, 63, 63], [127, 63, 63, ..., 63, 63, 63]], [[ 63, 63, 63, ..., 63, 127, 63], [ 63, 63, 63, ..., 63, 63, 63], [ 63, 63, 63, ..., 127, 63, 63], [ 63, 63, 63, ..., 63, 63, 63]], [[ 63, 63, 63, ..., 63, 63, 63], [ 63, 63, 63, ..., 63, 63, 63], [ 63, 63, 63, ..., 63, 63, 63], [ 63, 63, 63, ..., 63, 63, 63]], [[ 63, 127, 63, ..., 63, 127, 63], [ 63, 63, 63, ..., 63, 63, 63], [ 63, 63, 63, ..., 63, 63, 63], [ 63, 63, 63, ..., 63, 63, 63]], [[ 63, 127, 63, ..., 63, 127, 63], [ 63, 63, 63, ..., 63, 63, 63], [ 63, 63, 63, ..., 63, 63, 63], [127, 63, 63, ..., 63, 63, 63]]], shape=(5, 4, 1000)) - step_size(cv, chain, draw)float640.04739 0.04739 ... 0.05671 0.05671
array([[[0.0473867 , 0.0473867 , 0.0473867 , ..., 0.0473867 , 0.0473867 , 0.0473867 ], [0.05724771, 0.05724771, 0.05724771, ..., 0.05724771, 0.05724771, 0.05724771], [0.05911702, 0.05911702, 0.05911702, ..., 0.05911702, 0.05911702, 0.05911702], [0.04979589, 0.04979589, 0.04979589, ..., 0.04979589, 0.04979589, 0.04979589]], [[0.04924907, 0.04924907, 0.04924907, ..., 0.04924907, 0.04924907, 0.04924907], [0.05653066, 0.05653066, 0.05653066, ..., 0.05653066, 0.05653066, 0.05653066], [0.04695601, 0.04695601, 0.04695601, ..., 0.04695601, 0.04695601, 0.04695601], [0.0565039 , 0.0565039 , 0.0565039 , ..., 0.0565039 , 0.0565039 , 0.0565039 ]], [[0.05809591, 0.05809591, 0.05809591, ..., 0.05809591, 0.05809591, 0.05809591], ... [0.05574171, 0.05574171, 0.05574171, ..., 0.05574171, 0.05574171, 0.05574171]], [[0.05059041, 0.05059041, 0.05059041, ..., 0.05059041, 0.05059041, 0.05059041], [0.05594319, 0.05594319, 0.05594319, ..., 0.05594319, 0.05594319, 0.05594319], [0.05703389, 0.05703389, 0.05703389, ..., 0.05703389, 0.05703389, 0.05703389], [0.06077941, 0.06077941, 0.06077941, ..., 0.06077941, 0.06077941, 0.06077941]], [[0.04800403, 0.04800403, 0.04800403, ..., 0.04800403, 0.04800403, 0.04800403], [0.05951882, 0.05951882, 0.05951882, ..., 0.05951882, 0.05951882, 0.05951882], [0.05508927, 0.05508927, 0.05508927, ..., 0.05508927, 0.05508927, 0.05508927], [0.05670505, 0.05670505, 0.05670505, ..., 0.05670505, 0.05670505, 0.05670505]]], shape=(5, 4, 1000)) - tree_depth(cv, chain, draw)int646 6 6 6 6 6 6 6 ... 6 6 7 6 6 6 6 6
array([[[6, 6, 6, ..., 6, 7, 6], [6, 6, 6, ..., 6, 6, 6], [6, 6, 6, ..., 6, 6, 6], [7, 6, 6, ..., 6, 6, 6]], [[6, 6, 6, ..., 6, 7, 6], [6, 6, 6, ..., 6, 6, 6], [6, 6, 6, ..., 7, 6, 6], [6, 6, 6, ..., 6, 6, 6]], [[6, 6, 6, ..., 6, 6, 6], [6, 6, 6, ..., 6, 6, 6], [6, 6, 6, ..., 6, 6, 6], [6, 6, 6, ..., 6, 6, 6]], [[6, 7, 6, ..., 6, 7, 6], [6, 6, 6, ..., 6, 6, 6], [6, 6, 6, ..., 6, 6, 6], [6, 6, 6, ..., 6, 6, 6]], [[6, 7, 6, ..., 6, 7, 6], [6, 6, 6, ..., 6, 6, 6], [6, 6, 6, ..., 6, 6, 6], [7, 6, 6, ..., 6, 6, 6]]], shape=(5, 4, 1000))
- created_at :
- 2025-12-20T13:44:59.257358+00:00
- arviz_version :
- 0.22.0
<xarray.Dataset> Size: 988kB Dimensions: (cv: 5, chain: 4, draw: 1000) Coordinates: * cv (cv) object 40B 'Iteration 0' ... 'Iteration 4' * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 8kB 0 1 2 3 4 5 6 ... 994 995 996 997 998 999 Data variables: acceptance_rate (cv, chain, draw) float64 160kB 0.9825 0.989 ... 0.9515 1.0 diverging (cv, chain, draw) bool 20kB False False ... False False energy (cv, chain, draw) float64 160kB -506.9 -507.3 ... -528.7 lp (cv, chain, draw) float64 160kB -527.1 -523.7 ... -544.4 n_steps (cv, chain, draw) int64 160kB 63 63 63 63 ... 63 63 63 63 step_size (cv, chain, draw) float64 160kB 0.04739 0.04739 ... 0.05671 tree_depth (cv, chain, draw) int64 160kB 6 6 6 6 6 6 6 ... 7 6 6 6 6 6 Attributes: created_at: 2025-12-20T13:44:59.257358+00:00 arviz_version: 0.22.0xarray.Dataset -
- cv: 5
- chain: 1
- draw: 1000
- date: 179
- geo: 2
- control: 2
- fourier_mode: 4
- channel: 2
- changepoint: 5
- cv(cv)object'Iteration 0' ... 'Iteration 4'
array(['Iteration 0', 'Iteration 1', 'Iteration 2', 'Iteration 3', 'Iteration 4'], dtype=object) - chain(chain)int640
array([0])
- draw(draw)int640 1 2 3 4 5 ... 995 996 997 998 999
array([ 0, 1, 2, ..., 997, 998, 999], shape=(1000,))
- date(date)datetime64[ns]2018-04-02 ... 2021-08-30
array(['2018-04-02T00:00:00.000000000', '2018-04-09T00:00:00.000000000', '2018-04-16T00:00:00.000000000', '2018-04-23T00:00:00.000000000', '2018-04-30T00:00:00.000000000', '2018-05-07T00:00:00.000000000', '2018-05-14T00:00:00.000000000', '2018-05-21T00:00:00.000000000', '2018-05-28T00:00:00.000000000', '2018-06-04T00:00:00.000000000', '2018-06-11T00:00:00.000000000', '2018-06-18T00:00:00.000000000', '2018-06-25T00:00:00.000000000', '2018-07-02T00:00:00.000000000', '2018-07-09T00:00:00.000000000', '2018-07-16T00:00:00.000000000', '2018-07-23T00:00:00.000000000', '2018-07-30T00:00:00.000000000', '2018-08-06T00:00:00.000000000', '2018-08-13T00:00:00.000000000', '2018-08-20T00:00:00.000000000', '2018-08-27T00:00:00.000000000', '2018-09-03T00:00:00.000000000', '2018-09-10T00:00:00.000000000', '2018-09-17T00:00:00.000000000', '2018-09-24T00:00:00.000000000', '2018-10-01T00:00:00.000000000', '2018-10-08T00:00:00.000000000', '2018-10-15T00:00:00.000000000', '2018-10-22T00:00:00.000000000', '2018-10-29T00:00:00.000000000', '2018-11-05T00:00:00.000000000', '2018-11-12T00:00:00.000000000', '2018-11-19T00:00:00.000000000', '2018-11-26T00:00:00.000000000', '2018-12-03T00:00:00.000000000', '2018-12-10T00:00:00.000000000', '2018-12-17T00:00:00.000000000', '2018-12-24T00:00:00.000000000', '2018-12-31T00:00:00.000000000', '2019-01-07T00:00:00.000000000', '2019-01-14T00:00:00.000000000', '2019-01-21T00:00:00.000000000', '2019-01-28T00:00:00.000000000', '2019-02-04T00:00:00.000000000', '2019-02-11T00:00:00.000000000', '2019-02-18T00:00:00.000000000', '2019-02-25T00:00:00.000000000', '2019-03-04T00:00:00.000000000', '2019-03-11T00:00:00.000000000', '2019-03-18T00:00:00.000000000', '2019-03-25T00:00:00.000000000', '2019-04-01T00:00:00.000000000', '2019-04-08T00:00:00.000000000', '2019-04-15T00:00:00.000000000', '2019-04-22T00:00:00.000000000', '2019-04-29T00:00:00.000000000', '2019-05-06T00:00:00.000000000', '2019-05-13T00:00:00.000000000', '2019-05-20T00:00:00.000000000', '2019-05-27T00:00:00.000000000', '2019-06-03T00:00:00.000000000', '2019-06-10T00:00:00.000000000', '2019-06-17T00:00:00.000000000', '2019-06-24T00:00:00.000000000', '2019-07-01T00:00:00.000000000', '2019-07-08T00:00:00.000000000', '2019-07-15T00:00:00.000000000', '2019-07-22T00:00:00.000000000', '2019-07-29T00:00:00.000000000', '2019-08-05T00:00:00.000000000', '2019-08-12T00:00:00.000000000', '2019-08-19T00:00:00.000000000', '2019-08-26T00:00:00.000000000', '2019-09-02T00:00:00.000000000', '2019-09-09T00:00:00.000000000', '2019-09-16T00:00:00.000000000', '2019-09-23T00:00:00.000000000', '2019-09-30T00:00:00.000000000', '2019-10-07T00:00:00.000000000', '2019-10-14T00:00:00.000000000', '2019-10-21T00:00:00.000000000', '2019-10-28T00:00:00.000000000', '2019-11-04T00:00:00.000000000', '2019-11-11T00:00:00.000000000', '2019-11-18T00:00:00.000000000', '2019-11-25T00:00:00.000000000', '2019-12-02T00:00:00.000000000', '2019-12-09T00:00:00.000000000', '2019-12-16T00:00:00.000000000', '2019-12-23T00:00:00.000000000', '2019-12-30T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-13T00:00:00.000000000', '2020-01-20T00:00:00.000000000', '2020-01-27T00:00:00.000000000', '2020-02-03T00:00:00.000000000', '2020-02-10T00:00:00.000000000', '2020-02-17T00:00:00.000000000', '2020-02-24T00:00:00.000000000', '2020-03-02T00:00:00.000000000', '2020-03-09T00:00:00.000000000', '2020-03-16T00:00:00.000000000', '2020-03-23T00:00:00.000000000', '2020-03-30T00:00:00.000000000', '2020-04-06T00:00:00.000000000', '2020-04-13T00:00:00.000000000', '2020-04-20T00:00:00.000000000', '2020-04-27T00:00:00.000000000', '2020-05-04T00:00:00.000000000', '2020-05-11T00:00:00.000000000', '2020-05-18T00:00:00.000000000', '2020-05-25T00:00:00.000000000', '2020-06-01T00:00:00.000000000', '2020-06-08T00:00:00.000000000', '2020-06-15T00:00:00.000000000', '2020-06-22T00:00:00.000000000', '2020-06-29T00:00:00.000000000', '2020-07-06T00:00:00.000000000', '2020-07-13T00:00:00.000000000', '2020-07-20T00:00:00.000000000', '2020-07-27T00:00:00.000000000', '2020-08-03T00:00:00.000000000', '2020-08-10T00:00:00.000000000', '2020-08-17T00:00:00.000000000', '2020-08-24T00:00:00.000000000', '2020-08-31T00:00:00.000000000', '2020-09-07T00:00:00.000000000', '2020-09-14T00:00:00.000000000', '2020-09-21T00:00:00.000000000', '2020-09-28T00:00:00.000000000', '2020-10-05T00:00:00.000000000', '2020-10-12T00:00:00.000000000', '2020-10-19T00:00:00.000000000', '2020-10-26T00:00:00.000000000', '2020-11-02T00:00:00.000000000', '2020-11-09T00:00:00.000000000', '2020-11-16T00:00:00.000000000', '2020-11-23T00:00:00.000000000', '2020-11-30T00:00:00.000000000', '2020-12-07T00:00:00.000000000', '2020-12-14T00:00:00.000000000', '2020-12-21T00:00:00.000000000', '2020-12-28T00:00:00.000000000', '2021-01-04T00:00:00.000000000', '2021-01-11T00:00:00.000000000', '2021-01-18T00:00:00.000000000', '2021-01-25T00:00:00.000000000', '2021-02-01T00:00:00.000000000', '2021-02-08T00:00:00.000000000', '2021-02-15T00:00:00.000000000', '2021-02-22T00:00:00.000000000', '2021-03-01T00:00:00.000000000', '2021-03-08T00:00:00.000000000', '2021-03-15T00:00:00.000000000', '2021-03-22T00:00:00.000000000', '2021-03-29T00:00:00.000000000', '2021-04-05T00:00:00.000000000', '2021-04-12T00:00:00.000000000', '2021-04-19T00:00:00.000000000', '2021-04-26T00:00:00.000000000', '2021-05-03T00:00:00.000000000', '2021-05-10T00:00:00.000000000', '2021-05-17T00:00:00.000000000', '2021-05-24T00:00:00.000000000', '2021-05-31T00:00:00.000000000', '2021-06-07T00:00:00.000000000', '2021-06-14T00:00:00.000000000', '2021-06-21T00:00:00.000000000', '2021-06-28T00:00:00.000000000', '2021-07-05T00:00:00.000000000', '2021-07-12T00:00:00.000000000', '2021-07-19T00:00:00.000000000', '2021-07-26T00:00:00.000000000', '2021-08-02T00:00:00.000000000', '2021-08-09T00:00:00.000000000', '2021-08-16T00:00:00.000000000', '2021-08-23T00:00:00.000000000', '2021-08-30T00:00:00.000000000'], dtype='datetime64[ns]') - geo(geo)<U5'geo_a' 'geo_b'
array(['geo_a', 'geo_b'], dtype='<U5')
- control(control)<U7'event_1' 'event_2'
array(['event_1', 'event_2'], dtype='<U7')
- fourier_mode(fourier_mode)<U5'sin_1' 'sin_2' 'cos_1' 'cos_2'
array(['sin_1', 'sin_2', 'cos_1', 'cos_2'], dtype='<U5')
- channel(channel)<U2'x1' 'x2'
array(['x1', 'x2'], dtype='<U2')
- changepoint(changepoint)int640 1 2 3 4
array([0, 1, 2, 3, 4])
- y_original_scale(cv, chain, draw, date, geo)float642.209e+04 1.771e+04 ... 2.082e+04
array([[[[[2.20930343e+04, 1.77058466e+04], [7.57365141e+04, 5.81922759e+04], [3.34014097e+04, 2.07622056e+04], ..., [2.43870636e+03, 2.59166389e+04], [4.56608836e+03, 1.49870973e+04], [4.20616411e+04, 2.00785933e+04]], [[6.29168270e+03, 1.04894837e+04], [5.15036692e+03, 1.16338356e+04], [3.94344687e+03, 1.39227173e+04], ..., [6.11318526e+03, 1.12690485e+04], [4.38600032e+03, 6.82331527e+03], [4.07084323e+03, 8.11754936e+03]], [[7.81044329e+03, 4.95061387e+02], [3.78592042e+03, 1.11254487e+04], [1.16741299e+04, 1.46595505e+04], ..., ... ..., [1.09791051e+00, 6.22415714e+03], [8.72727992e-01, 5.94704575e+03], [2.64776226e+00, 6.25373329e+03]], [[1.65268211e+03, 5.92112620e+03], [1.12120718e+04, 3.55287595e+04], [7.38250133e+03, 1.31776004e+04], ..., [7.49774995e+03, 1.22590419e+04], [2.73648791e+03, 1.26445036e+04], [1.40962905e+04, 6.29499464e+03]], [[2.79692416e+03, 1.17886417e+04], [2.72170967e+04, 4.43873801e+03], [5.81993463e+03, 1.89944403e+04], ..., [8.04108434e+03, 1.66056980e+03], [1.89399470e+04, 4.62390354e+03], [1.61538697e+04, 2.08181535e+04]]]]], shape=(5, 1, 1000, 179, 2)) - intercept_contribution(cv, chain, draw, geo)float641.251 0.9915 ... 0.2806 0.06395
array([[[[ 1.2512725 , 0.99149038], [ 0.64405921, 1.37515816], [-0.18236928, 1.12205079], ..., [-0.12564359, 1.00437401], [ 0.1142929 , 0.18189466], [ 0.28059205, 0.06394963]]], [[[ 1.2512725 , 0.99149038], [ 0.64405921, 1.37515816], [-0.18236928, 1.12205079], ..., [-0.12564359, 1.00437401], [ 0.1142929 , 0.18189466], [ 0.28059205, 0.06394963]]], [[[ 1.2512725 , 0.99149038], [ 0.64405921, 1.37515816], ... [ 0.1142929 , 0.18189466], [ 0.28059205, 0.06394963]]], [[[ 1.2512725 , 0.99149038], [ 0.64405921, 1.37515816], [-0.18236928, 1.12205079], ..., [-0.12564359, 1.00437401], [ 0.1142929 , 0.18189466], [ 0.28059205, 0.06394963]]], [[[ 1.2512725 , 0.99149038], [ 0.64405921, 1.37515816], [-0.18236928, 1.12205079], ..., [-0.12564359, 1.00437401], [ 0.1142929 , 0.18189466], [ 0.28059205, 0.06394963]]]], shape=(5, 1, 1000, 2)) - y_sigma(cv, chain, draw)float643.431 0.3755 0.7479 ... 1.386 1.703
array([[[3.43140996, 0.37553038, 0.74793147, ..., 0.02726699, 1.38561297, 1.70326361]], [[3.43140996, 0.37553038, 0.74793147, ..., 0.02726699, 1.38561297, 1.70326361]], [[3.43140996, 0.37553038, 0.74793147, ..., 0.02726699, 1.38561297, 1.70326361]], [[3.43140996, 0.37553038, 0.74793147, ..., 0.02726699, 1.38561297, 1.70326361]], [[3.43140996, 0.37553038, 0.74793147, ..., 0.02726699, 1.38561297, 1.70326361]]], shape=(5, 1, 1000)) - control_contribution(cv, chain, draw, date, geo, control)float640.0 -0.0 0.0 -0.0 ... 0.0 0.0 0.0
array([[[[[[ 0., -0.], [ 0., -0.]], [[ 0., -0.], [ 0., -0.]], [[ 0., -0.], [ 0., -0.]], ..., [[ 0., -0.], [ 0., -0.]], [[ 0., -0.], [ 0., -0.]], [[ 0., -0.], [ 0., -0.]]], ... [[[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]], ..., [[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]]]]]], shape=(5, 1, 1000, 179, 2, 2)) - yearly_seasonality_contribution_original_scale(cv, chain, draw, date, geo)float641.692e+03 -3.936e+03 ... -1.128e+03
array([[[[[ 1.69203307e+03, -3.93574883e+03], [ 1.37460203e+03, -3.95352964e+03], [ 1.10266799e+03, -3.71117195e+03], ..., [-1.64541557e+02, 3.06453407e+02], [-7.41123406e+02, -8.89343571e+02], [-1.36220353e+03, -2.05757791e+03]], [[-1.70192452e+03, -9.94334032e+02], [-1.98455462e+03, -3.12303551e+02], [-2.25502313e+03, 4.35736957e+02], ..., [ 1.88551033e+03, -4.64534912e+03], [ 2.26156258e+03, -5.12592734e+03], [ 2.56476031e+03, -5.37973376e+03]], [[-1.14413399e+04, 5.28607916e+02], [-1.09947457e+04, -7.33431986e+00], [-1.00721741e+04, -5.72565680e+02], ..., ... [-1.98210377e+02, -1.05211298e+03], [-4.04141681e+01, -1.30616113e+03], [ 1.15547680e+02, -1.49692210e+03]], [[ 1.52189537e+03, -2.17428634e+03], [ 1.55023306e+03, -3.50260770e+03], [ 1.65682194e+03, -4.65670329e+03], ..., [ 8.42514104e+02, -4.99097246e+03], [-2.07142656e+02, -4.89794965e+03], [-1.29292390e+03, -4.77344629e+03]], [[ 2.99043012e+02, -6.02240285e+02], [ 3.48492880e+02, -5.20468717e+02], [ 3.68717805e+02, -3.90679655e+02], ..., [ 1.40270009e+02, -6.28532748e+02], [ 2.72681251e+02, -8.95595509e+02], [ 4.03081819e+02, -1.12840691e+03]]]]], shape=(5, 1, 1000, 179, 2)) - total_media_contribution_original_scale(cv, chain, draw)float643.754e+05 5.392e+05 ... 2.822e+05
array([[[375416.47503755, 539159.20284039, 520251.14757737, ..., 200769.01898492, 517328.19483708, 282189.03682468]], [[375416.47503755, 539159.20284039, 520251.14757737, ..., 200769.01898492, 517328.19483708, 282189.03682468]], [[375416.47503755, 539159.20284039, 520251.14757737, ..., 200769.01898492, 517328.19483708, 282189.03682468]], [[375416.47503755, 539159.20284039, 520251.14757737, ..., 200769.01898492, 517328.19483708, 282189.03682468]], [[375416.47503755, 539159.20284039, 520251.14757737, ..., 200769.01898492, 517328.19483708, 282189.03682468]]], shape=(5, 1, 1000)) - fourier_contribution(cv, chain, draw, date, geo, fourier_mode)float640.3445 -0.004497 ... -0.05605
array([[[[[[ 3.44533768e-01, -4.49665815e-03, 5.19669213e-04, -1.37001665e-01], [ 8.75237250e-02, -2.09492578e-03, 6.63614693e-05, -5.51779553e-01]], [[ 3.41549373e-01, -4.97012753e-02, 5.79405947e-03, -1.32274661e-01], [ 8.67655835e-02, -2.31550808e-02, 7.39898171e-04, -5.32741359e-01]], [[ 3.33618411e-01, -9.20370760e-02, 1.09845359e-02, -1.19912607e-01], [ 8.47508393e-02, -4.28786973e-02, 1.40271913e-03, -4.82952704e-01]], ..., [[-2.42457585e-01, 1.90115574e-01, 3.12212891e-02, 1.32602813e-03], [-6.15927753e-02, 8.85720027e-02, 3.98694125e-03, ... 5.60941590e-02], [ 4.96802184e-02, 1.49524675e-02, -3.04898792e-03, -1.07869128e-01]], ..., [[ 2.03354207e-02, -2.06282183e-02, 1.77878782e-02, -6.20305363e-04], [-3.61051590e-02, -3.08864327e-02, -8.66612244e-03, 1.19284787e-03]], [[ 2.26547332e-02, -2.00804858e-02, 1.55428571e-02, 1.46870199e-02], [-4.02230550e-02, -3.00663180e-02, -7.57236476e-03, -2.82431549e-02]], [[ 2.46459433e-02, -1.83736839e-02, 1.30727328e-02, 2.91465930e-02], [-4.37584113e-02, -2.75107400e-02, -6.36893854e-03, -5.60489294e-02]]]]]], shape=(5, 1, 1000, 179, 2, 4)) - channel_contribution_original_scale(cv, chain, draw, date, geo, channel)float64465.5 0.0 472.7 ... 309.6 326.8
array([[[[[[ 465.53479032, 0. ], [ 472.71764226, 0. ]], [[ 379.01869507, 0. ], [ 384.86666868, 0. ]], [[ 591.01163642, 0. ], [ 600.13050179, 0. ]], ..., [[ 398.37150453, 262.17614242], [ 404.51807745, 266.22132326]], [[ 582.45008704, 54.31824372], [ 591.43685414, 55.15633339]], [[ 860.71973108, 11.2198349 ], [ 873.99998965, 11.39294852]]], ... [[[ 140.68831658, 0. ], [ 142.85903157, 0. ]], [[ 128.51577266, 0. ], [ 130.49867445, 0. ]], [[ 201.07409419, 0. ], [ 204.17651634, 0. ]], ..., [[ 140.86237154, 670.96827669], [ 143.03577207, 681.32081293]], [[ 201.78220676, 538.3820113 ], [ 204.89555456, 546.68884112]], [[ 304.90305068, 321.78617211], [ 309.6074756 , 326.7510909 ]]]]]], shape=(5, 1, 1000, 179, 2, 2)) - trend_effect_contribution(cv, chain, draw, date, geo)float640.0 0.0 ... 0.09029 0.02925
array([[[[[ 0.00000000e+00, 0.00000000e+00], [ 2.09007974e-04, -6.78261897e-04], [ 4.18015947e-04, -1.35652379e-03], ..., [ 1.26030606e-01, 4.47026656e-02], [ 1.27024891e-01, 4.51829235e-02], [ 1.28019176e-01, 4.56631815e-02]], [[ 0.00000000e+00, 0.00000000e+00], [-4.25981598e-05, 5.31643206e-05], [-8.51963196e-05, 1.06328641e-04], ..., [-9.60624994e-02, 4.93223951e-03], [-9.72587401e-02, 4.89200741e-03], [-9.84549807e-02, 4.85177532e-03]], [[ 0.00000000e+00, 0.00000000e+00], [ 1.09660075e-04, 5.00482538e-04], [ 2.19320151e-04, 1.00096508e-03], ..., ... [-2.48109846e-01, -1.42341298e-01], [-2.50510484e-01, -1.44122940e-01], [-2.52911123e-01, -1.45904582e-01]], [[ 0.00000000e+00, 0.00000000e+00], [ 1.41721068e-04, 3.43808905e-04], [ 2.83442136e-04, 6.87617810e-04], ..., [-1.94582843e-01, -4.42743401e-04], [-1.95706983e-01, -1.23495510e-03], [-1.96831122e-01, -2.02716680e-03]], [[ 0.00000000e+00, 0.00000000e+00], [ 5.58694861e-04, 5.59912850e-06], [ 1.11738972e-03, 1.11982570e-05], ..., [ 8.93165111e-02, 2.87734040e-02], [ 8.98022937e-02, 2.90107752e-02], [ 9.02880763e-02, 2.92481465e-02]]]]], shape=(5, 1, 1000, 179, 2)) - gamma_fourier_b(cv, chain, draw)float640.1704 0.1105 ... 0.4074 0.04729
array([[[0.1704194 , 0.11052746, 0.25752702, ..., 0.07472655, 0.40742374, 0.04728654]], [[0.1704194 , 0.11052746, 0.25752702, ..., 0.07472655, 0.40742374, 0.04728654]], [[0.1704194 , 0.11052746, 0.25752702, ..., 0.07472655, 0.40742374, 0.04728654]], [[0.1704194 , 0.11052746, 0.25752702, ..., 0.07472655, 0.40742374, 0.04728654]], [[0.1704194 , 0.11052746, 0.25752702, ..., 0.07472655, 0.40742374, 0.04728654]]], shape=(5, 1, 1000)) - y_sigma_sigma(cv, chain, draw)float642.431 0.7634 1.328 ... 0.9942 1.129
array([[[2.43073678, 0.76340209, 1.32807985, ..., 2.66011663, 0.9942044 , 1.12850455]], [[2.43073678, 0.76340209, 1.32807985, ..., 2.66011663, 0.9942044 , 1.12850455]], [[2.43073678, 0.76340209, 1.32807985, ..., 2.66011663, 0.9942044 , 1.12850455]], [[2.43073678, 0.76340209, 1.32807985, ..., 2.66011663, 0.9942044 , 1.12850455]], [[2.43073678, 0.76340209, 1.32807985, ..., 2.66011663, 0.9942044 , 1.12850455]]], shape=(5, 1, 1000)) - adstock_alpha(cv, chain, draw, channel)float640.4557 0.2066 ... 0.5606 0.7992
array([[[[0.45568659, 0.20661504], [0.5814089 , 0.61538845], [0.19150389, 0.45006252], ..., [0.57806644, 0.28696751], [0.53184082, 0.29900455], [0.56062921, 0.79922485]]], [[[0.45568659, 0.20661504], [0.5814089 , 0.61538845], [0.19150389, 0.45006252], ..., [0.57806644, 0.28696751], [0.53184082, 0.29900455], [0.56062921, 0.79922485]]], [[[0.45568659, 0.20661504], [0.5814089 , 0.61538845], ... [0.53184082, 0.29900455], [0.56062921, 0.79922485]]], [[[0.45568659, 0.20661504], [0.5814089 , 0.61538845], [0.19150389, 0.45006252], ..., [0.57806644, 0.28696751], [0.53184082, 0.29900455], [0.56062921, 0.79922485]]], [[[0.45568659, 0.20661504], [0.5814089 , 0.61538845], [0.19150389, 0.45006252], ..., [0.57806644, 0.28696751], [0.53184082, 0.29900455], [0.56062921, 0.79922485]]]], shape=(5, 1, 1000, 2)) - saturation_beta(cv, chain, draw, channel)float640.2292 0.3409 ... 0.4544 0.4472
array([[[[0.22915846, 0.34090021], [0.27266416, 0.15623584], [0.35387347, 0.22388585], ..., [0.42020823, 0.24624919], [0.22980622, 0.32460941], [0.45443084, 0.44722585]]], [[[0.22915846, 0.34090021], [0.27266416, 0.15623584], [0.35387347, 0.22388585], ..., [0.42020823, 0.24624919], [0.22980622, 0.32460941], [0.45443084, 0.44722585]]], [[[0.22915846, 0.34090021], [0.27266416, 0.15623584], ... [0.22980622, 0.32460941], [0.45443084, 0.44722585]]], [[[0.22915846, 0.34090021], [0.27266416, 0.15623584], [0.35387347, 0.22388585], ..., [0.42020823, 0.24624919], [0.22980622, 0.32460941], [0.45443084, 0.44722585]]], [[[0.22915846, 0.34090021], [0.27266416, 0.15623584], [0.35387347, 0.22388585], ..., [0.42020823, 0.24624919], [0.22980622, 0.32460941], [0.45443084, 0.44722585]]]], shape=(5, 1, 1000, 2)) - gamma_fourier(cv, chain, draw, geo, fourier_mode)float640.3446 0.1901 ... 0.0122 0.1233
array([[[[[ 0.34455786, 0.19012448, -0.04394149, 0.13704 ], [ 0.08752985, 0.08857615, -0.0056113 , 0.55193394]], [[-0.27550025, 0.09717794, 0.08935537, -0.07411176], [ 0.14829381, -0.36501768, 0.11772733, 0.27340356]], [[-0.44989045, -0.05746056, -0.03446775, 0.92858449], [ 0.05086926, -0.24215155, 0.99984288, -0.01786303]], ..., [[-0.06646415, 0.00246676, 0.10259838, -0.0189044 ], [ 0.08627194, -0.10423344, -0.05550652, 0.08779704]], [[ 0.42762836, 0.16935619, -0.32448842, 0.24441169], [ 0.06013602, 0.18197577, 1.03286012, 0.30129382]], [[-0.02889878, -0.02062918, -0.02503503, -0.06410622], [ 0.05130925, -0.03088788, 0.01219688, 0.12327632]]]], ... [[[[ 0.34455786, 0.19012448, -0.04394149, 0.13704 ], [ 0.08752985, 0.08857615, -0.0056113 , 0.55193394]], [[-0.27550025, 0.09717794, 0.08935537, -0.07411176], [ 0.14829381, -0.36501768, 0.11772733, 0.27340356]], [[-0.44989045, -0.05746056, -0.03446775, 0.92858449], [ 0.05086926, -0.24215155, 0.99984288, -0.01786303]], ..., [[-0.06646415, 0.00246676, 0.10259838, -0.0189044 ], [ 0.08627194, -0.10423344, -0.05550652, 0.08779704]], [[ 0.42762836, 0.16935619, -0.32448842, 0.24441169], [ 0.06013602, 0.18197577, 1.03286012, 0.30129382]], [[-0.02889878, -0.02062918, -0.02503503, -0.06410622], [ 0.05130925, -0.03088788, 0.01219688, 0.12327632]]]]], shape=(5, 1, 1000, 2, 4)) - saturation_lam(cv, chain, draw, channel)float642.862 1.303 4.408 ... 0.5255 1.626
array([[[[2.8619941 , 1.30333786], [4.40801357, 2.25953976], [2.79587657, 2.33113794], ..., [0.81262041, 0.7532395 ], [5.19248552, 1.17544194], [0.52545042, 1.62553599]]], [[[2.8619941 , 1.30333786], [4.40801357, 2.25953976], [2.79587657, 2.33113794], ..., [0.81262041, 0.7532395 ], [5.19248552, 1.17544194], [0.52545042, 1.62553599]]], [[[2.8619941 , 1.30333786], [4.40801357, 2.25953976], ... [5.19248552, 1.17544194], [0.52545042, 1.62553599]]], [[[2.8619941 , 1.30333786], [4.40801357, 2.25953976], [2.79587657, 2.33113794], ..., [0.81262041, 0.7532395 ], [5.19248552, 1.17544194], [0.52545042, 1.62553599]]], [[[2.8619941 , 1.30333786], [4.40801357, 2.25953976], [2.79587657, 2.33113794], ..., [0.81262041, 0.7532395 ], [5.19248552, 1.17544194], [0.52545042, 1.62553599]]]], shape=(5, 1, 1000, 2)) - gamma_control(cv, chain, draw, control)float640.8124 -0.03645 ... 1.109 0.2955
array([[[[ 0.8124119 , -0.03645386], [-0.16946794, 0.32243159], [-0.47143659, -0.07512279], ..., [-0.47993439, -0.309129 ], [-0.3718381 , -0.32359854], [ 1.10866323, 0.29547768]]], [[[ 0.8124119 , -0.03645386], [-0.16946794, 0.32243159], [-0.47143659, -0.07512279], ..., [-0.47993439, -0.309129 ], [-0.3718381 , -0.32359854], [ 1.10866323, 0.29547768]]], [[[ 0.8124119 , -0.03645386], [-0.16946794, 0.32243159], ... [-0.3718381 , -0.32359854], [ 1.10866323, 0.29547768]]], [[[ 0.8124119 , -0.03645386], [-0.16946794, 0.32243159], [-0.47143659, -0.07512279], ..., [-0.47993439, -0.309129 ], [-0.3718381 , -0.32359854], [ 1.10866323, 0.29547768]]], [[[ 0.8124119 , -0.03645386], [-0.16946794, 0.32243159], [-0.47143659, -0.07512279], ..., [-0.47993439, -0.309129 ], [-0.3718381 , -0.32359854], [ 1.10866323, 0.29547768]]]], shape=(5, 1, 1000, 2)) - control_contribution_original_scale(cv, chain, draw, date, geo, control)float640.0 -0.0 0.0 -0.0 ... 0.0 0.0 0.0
array([[[[[[ 0., -0.], [ 0., -0.]], [[ 0., -0.], [ 0., -0.]], [[ 0., -0.], [ 0., -0.]], ..., [[ 0., -0.], [ 0., -0.]], [[ 0., -0.], [ 0., -0.]], [[ 0., -0.], [ 0., -0.]]], ... [[[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]], ..., [[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]]]]]], shape=(5, 1, 1000, 179, 2, 2)) - channel_contribution(cv, chain, draw, date, geo, channel)float640.056 0.0 0.056 ... 0.03668 0.03871
array([[[[[[0.05600481, 0. ], [0.05600481, 0. ]], [[0.04559674, 0. ], [0.04559674, 0. ]], [[0.07109994, 0. ], [0.07109994, 0. ]], ..., [[0.04792492, 0.03154034], [0.04792492, 0.03154034]], [[0.07006996, 0.0065346 ], [0.07006996, 0.0065346 ]], [[0.10354638, 0.00134977], [0.10354638, 0.00134977]]], ... [[[0.0169251 , 0. ], [0.0169251 , 0. ]], [[0.01546072, 0. ], [0.01546072, 0. ]], [[0.02418963, 0. ], [0.02418963, 0. ]], ..., [[0.01694604, 0.08071889], [0.01694604, 0.08071889]], [[0.02427482, 0.06476848], [0.02427482, 0.06476848]], [[0.03668047, 0.03871155], [0.03668047, 0.03871155]]]]]], shape=(5, 1, 1000, 179, 2, 2)) - yearly_seasonality_contribution(cv, chain, draw, date, geo)float640.2036 -0.4663 ... 0.04849 -0.1337
array([[[[[ 2.03555114e-01, -4.66284392e-01], [ 1.65367497e-01, -4.68390958e-01], [ 1.32653264e-01, -4.39677843e-01], ..., [-1.97946932e-02, 3.63067987e-02], [-8.91586946e-02, -1.05364200e-01], [-1.63875932e-01, -2.43769739e-01]], [[-2.04745077e-01, -1.17802853e-01], [-2.38746069e-01, -3.69998894e-02], [-2.71283995e-01, 5.16235539e-02], ..., [ 2.26830833e-01, -5.50353664e-01], [ 2.72070705e-01, -6.07289747e-01], [ 3.08546026e-01, -6.37359241e-01]], [[-1.37641710e+00, 6.26263594e-02], [-1.32269088e+00, -8.68927115e-04], [-1.21170359e+00, -6.78342169e-02], ..., ... [-2.38451226e-02, -1.24648163e-01], [-4.86190889e-03, -1.54746295e-01], [ 1.39006274e-02, -1.77346533e-01]], [[ 1.83087194e-01, -2.57596668e-01], [ 1.86496277e-01, -4.14968376e-01], [ 1.99319143e-01, -5.51698839e-01], ..., [ 1.01356207e-01, -5.91301086e-01], [-2.49196944e-02, -5.80280291e-01], [-1.55541448e-01, -5.65529864e-01]], [[ 3.59754993e-02, -7.13498898e-02], [ 4.19244219e-02, -6.16620749e-02], [ 4.43575225e-02, -4.62854296e-02], ..., [ 1.68747753e-02, -7.44648662e-02], [ 3.28041244e-02, -1.06104893e-01], [ 4.84915852e-02, -1.33687019e-01]]]]], shape=(5, 1, 1000, 179, 2)) - intercept_contribution_original_scale(cv, chain, draw, geo)float641.04e+04 8.369e+03 ... 539.8
array([[[[10401.08693126, 8368.83488979], [ 5353.68262045, 11607.24488372], [-1515.92779883, 9470.85119806], ..., [-1044.40074634, 8477.58131351], [ 950.04917273, 1535.31125814], [ 2332.39544359, 539.7772121 ]]], [[[10401.08693126, 8368.83488979], [ 5353.68262045, 11607.24488372], [-1515.92779883, 9470.85119806], ..., [-1044.40074634, 8477.58131351], [ 950.04917273, 1535.31125814], [ 2332.39544359, 539.7772121 ]]], [[[10401.08693126, 8368.83488979], [ 5353.68262045, 11607.24488372], ... [ 950.04917273, 1535.31125814], [ 2332.39544359, 539.7772121 ]]], [[[10401.08693126, 8368.83488979], [ 5353.68262045, 11607.24488372], [-1515.92779883, 9470.85119806], ..., [-1044.40074634, 8477.58131351], [ 950.04917273, 1535.31125814], [ 2332.39544359, 539.7772121 ]]], [[[10401.08693126, 8368.83488979], [ 5353.68262045, 11607.24488372], [-1515.92779883, 9470.85119806], ..., [-1044.40074634, 8477.58131351], [ 950.04917273, 1535.31125814], [ 2332.39544359, 539.7772121 ]]]], shape=(5, 1, 1000, 2)) - delta(cv, chain, draw, changepoint, geo)float640.0372 -0.1207 ... 0.01127 -0.06874
array([[[[[ 0.03720342, -0.12073062], [ 0.11805963, 0.00168829], [-0.01263559, 0.45598208], [ 0.0343553 , -0.25145384], [-0.12346697, -0.26677138]], [[-0.00758247, 0.00946325], [-0.07842311, 0.01151951], [-0.00129545, -0.02486035], [-0.1256298 , -0.00328372], [-0.00155691, 0.00080881]], [[ 0.01951949, 0.08908589], [ 0.00087293, 0.04845311], [ 0.10108929, -0.06455236], [ 0.08843788, -0.01617784], [-0.01304274, -0.00322735]], ..., ... ..., [[ 0.05909605, -0.00718778], [-0.16582717, -0.072432 ], [-0.42996463, -0.10005871], [ 0.1093821 , -0.13745379], [-0.05881893, -0.07300612]], [[ 0.02522635, 0.06119799], [-0.32291172, 0.01281069], [-0.01708327, -0.07631031], [ 0.11467183, -0.13871204], [ 0.00435559, -0.03519948]], [[ 0.09944769, 0.00099664], [-0.00136948, 0.02043448], [-0.02092109, 0.03088161], [ 0.00931219, -0.01006065], [ 0.01126757, -0.06874226]]]]], shape=(5, 1, 1000, 5, 2)) - delta_b(cv, chain, draw)float640.1825 0.02097 ... 0.1141 0.0189
array([[[0.18254392, 0.02097192, 0.0410486 , ..., 0.18739763, 0.11406997, 0.01889772]], [[0.18254392, 0.02097192, 0.0410486 , ..., 0.18739763, 0.11406997, 0.01889772]], [[0.18254392, 0.02097192, 0.0410486 , ..., 0.18739763, 0.11406997, 0.01889772]], [[0.18254392, 0.02097192, 0.0410486 , ..., 0.18739763, 0.11406997, 0.01889772]], [[0.18254392, 0.02097192, 0.0410486 , ..., 0.18739763, 0.11406997, 0.01889772]]], shape=(5, 1, 1000))
- created_at :
- 2025-07-26T08:20:31.433730+00:00
- arviz_version :
- 0.21.0
- inference_library :
- pymc
- inference_library_version :
- 5.25.1
- pymc_marketing_version :
- 0.15.1
<xarray.Dataset> Size: 231MB Dimensions: (cv: 5, chain: 1, draw: 1000, date: 179, geo: 2, control: 2, fourier_mode: 4, channel: 2, changepoint: 5) Coordinates: * cv (cv) object 40B 'Iteratio... * chain (chain) int64 8B 0 * draw (draw) int64 8kB 0 1 ... 999 * date (date) datetime64[ns] 1kB ... * geo (geo) <U5 40B 'geo_a' 'ge... * control (control) <U7 56B 'event_... * fourier_mode (fourier_mode) <U5 80B 's... * channel (channel) <U2 16B 'x1' 'x2' * changepoint (changepoint) int64 40B 0... Data variables: (12/22) y_original_scale (cv, chain, draw, date, geo) float64 14MB ... intercept_contribution (cv, chain, draw, geo) float64 80kB ... y_sigma (cv, chain, draw) float64 40kB ... control_contribution (cv, chain, draw, date, geo, control) float64 29MB ... yearly_seasonality_contribution_original_scale (cv, chain, draw, date, geo) float64 14MB ... total_media_contribution_original_scale (cv, chain, draw) float64 40kB ... ... ... control_contribution_original_scale (cv, chain, draw, date, geo, control) float64 29MB ... channel_contribution (cv, chain, draw, date, geo, channel) float64 29MB ... yearly_seasonality_contribution (cv, chain, draw, date, geo) float64 14MB ... intercept_contribution_original_scale (cv, chain, draw, geo) float64 80kB ... delta (cv, chain, draw, changepoint, geo) float64 400kB ... delta_b (cv, chain, draw) float64 40kB ... Attributes: created_at: 2025-07-26T08:20:31.433730+00:00 arviz_version: 0.21.0 inference_library: pymc inference_library_version: 5.25.1 pymc_marketing_version: 0.15.1xarray.Dataset -
- cv: 5
- chain: 1
- draw: 1000
- date: 179
- geo: 2
- cv(cv)object'Iteration 0' ... 'Iteration 4'
array(['Iteration 0', 'Iteration 1', 'Iteration 2', 'Iteration 3', 'Iteration 4'], dtype=object) - chain(chain)int640
array([0])
- draw(draw)int640 1 2 3 4 5 ... 995 996 997 998 999
array([ 0, 1, 2, ..., 997, 998, 999], shape=(1000,))
- date(date)datetime64[ns]2018-04-02 ... 2021-08-30
array(['2018-04-02T00:00:00.000000000', '2018-04-09T00:00:00.000000000', '2018-04-16T00:00:00.000000000', '2018-04-23T00:00:00.000000000', '2018-04-30T00:00:00.000000000', '2018-05-07T00:00:00.000000000', '2018-05-14T00:00:00.000000000', '2018-05-21T00:00:00.000000000', '2018-05-28T00:00:00.000000000', '2018-06-04T00:00:00.000000000', '2018-06-11T00:00:00.000000000', '2018-06-18T00:00:00.000000000', '2018-06-25T00:00:00.000000000', '2018-07-02T00:00:00.000000000', '2018-07-09T00:00:00.000000000', '2018-07-16T00:00:00.000000000', '2018-07-23T00:00:00.000000000', '2018-07-30T00:00:00.000000000', '2018-08-06T00:00:00.000000000', '2018-08-13T00:00:00.000000000', '2018-08-20T00:00:00.000000000', '2018-08-27T00:00:00.000000000', '2018-09-03T00:00:00.000000000', '2018-09-10T00:00:00.000000000', '2018-09-17T00:00:00.000000000', '2018-09-24T00:00:00.000000000', '2018-10-01T00:00:00.000000000', '2018-10-08T00:00:00.000000000', '2018-10-15T00:00:00.000000000', '2018-10-22T00:00:00.000000000', '2018-10-29T00:00:00.000000000', '2018-11-05T00:00:00.000000000', '2018-11-12T00:00:00.000000000', '2018-11-19T00:00:00.000000000', '2018-11-26T00:00:00.000000000', '2018-12-03T00:00:00.000000000', '2018-12-10T00:00:00.000000000', '2018-12-17T00:00:00.000000000', '2018-12-24T00:00:00.000000000', '2018-12-31T00:00:00.000000000', '2019-01-07T00:00:00.000000000', '2019-01-14T00:00:00.000000000', '2019-01-21T00:00:00.000000000', '2019-01-28T00:00:00.000000000', '2019-02-04T00:00:00.000000000', '2019-02-11T00:00:00.000000000', '2019-02-18T00:00:00.000000000', '2019-02-25T00:00:00.000000000', '2019-03-04T00:00:00.000000000', '2019-03-11T00:00:00.000000000', '2019-03-18T00:00:00.000000000', '2019-03-25T00:00:00.000000000', '2019-04-01T00:00:00.000000000', '2019-04-08T00:00:00.000000000', '2019-04-15T00:00:00.000000000', '2019-04-22T00:00:00.000000000', '2019-04-29T00:00:00.000000000', '2019-05-06T00:00:00.000000000', '2019-05-13T00:00:00.000000000', '2019-05-20T00:00:00.000000000', '2019-05-27T00:00:00.000000000', '2019-06-03T00:00:00.000000000', '2019-06-10T00:00:00.000000000', '2019-06-17T00:00:00.000000000', '2019-06-24T00:00:00.000000000', '2019-07-01T00:00:00.000000000', '2019-07-08T00:00:00.000000000', '2019-07-15T00:00:00.000000000', '2019-07-22T00:00:00.000000000', '2019-07-29T00:00:00.000000000', '2019-08-05T00:00:00.000000000', '2019-08-12T00:00:00.000000000', '2019-08-19T00:00:00.000000000', '2019-08-26T00:00:00.000000000', '2019-09-02T00:00:00.000000000', '2019-09-09T00:00:00.000000000', '2019-09-16T00:00:00.000000000', '2019-09-23T00:00:00.000000000', '2019-09-30T00:00:00.000000000', '2019-10-07T00:00:00.000000000', '2019-10-14T00:00:00.000000000', '2019-10-21T00:00:00.000000000', '2019-10-28T00:00:00.000000000', '2019-11-04T00:00:00.000000000', '2019-11-11T00:00:00.000000000', '2019-11-18T00:00:00.000000000', '2019-11-25T00:00:00.000000000', '2019-12-02T00:00:00.000000000', '2019-12-09T00:00:00.000000000', '2019-12-16T00:00:00.000000000', '2019-12-23T00:00:00.000000000', '2019-12-30T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-13T00:00:00.000000000', '2020-01-20T00:00:00.000000000', '2020-01-27T00:00:00.000000000', '2020-02-03T00:00:00.000000000', '2020-02-10T00:00:00.000000000', '2020-02-17T00:00:00.000000000', '2020-02-24T00:00:00.000000000', '2020-03-02T00:00:00.000000000', '2020-03-09T00:00:00.000000000', '2020-03-16T00:00:00.000000000', '2020-03-23T00:00:00.000000000', '2020-03-30T00:00:00.000000000', '2020-04-06T00:00:00.000000000', '2020-04-13T00:00:00.000000000', '2020-04-20T00:00:00.000000000', '2020-04-27T00:00:00.000000000', '2020-05-04T00:00:00.000000000', '2020-05-11T00:00:00.000000000', '2020-05-18T00:00:00.000000000', '2020-05-25T00:00:00.000000000', '2020-06-01T00:00:00.000000000', '2020-06-08T00:00:00.000000000', '2020-06-15T00:00:00.000000000', '2020-06-22T00:00:00.000000000', '2020-06-29T00:00:00.000000000', '2020-07-06T00:00:00.000000000', '2020-07-13T00:00:00.000000000', '2020-07-20T00:00:00.000000000', '2020-07-27T00:00:00.000000000', '2020-08-03T00:00:00.000000000', '2020-08-10T00:00:00.000000000', '2020-08-17T00:00:00.000000000', '2020-08-24T00:00:00.000000000', '2020-08-31T00:00:00.000000000', '2020-09-07T00:00:00.000000000', '2020-09-14T00:00:00.000000000', '2020-09-21T00:00:00.000000000', '2020-09-28T00:00:00.000000000', '2020-10-05T00:00:00.000000000', '2020-10-12T00:00:00.000000000', '2020-10-19T00:00:00.000000000', '2020-10-26T00:00:00.000000000', '2020-11-02T00:00:00.000000000', '2020-11-09T00:00:00.000000000', '2020-11-16T00:00:00.000000000', '2020-11-23T00:00:00.000000000', '2020-11-30T00:00:00.000000000', '2020-12-07T00:00:00.000000000', '2020-12-14T00:00:00.000000000', '2020-12-21T00:00:00.000000000', '2020-12-28T00:00:00.000000000', '2021-01-04T00:00:00.000000000', '2021-01-11T00:00:00.000000000', '2021-01-18T00:00:00.000000000', '2021-01-25T00:00:00.000000000', '2021-02-01T00:00:00.000000000', '2021-02-08T00:00:00.000000000', '2021-02-15T00:00:00.000000000', '2021-02-22T00:00:00.000000000', '2021-03-01T00:00:00.000000000', '2021-03-08T00:00:00.000000000', '2021-03-15T00:00:00.000000000', '2021-03-22T00:00:00.000000000', '2021-03-29T00:00:00.000000000', '2021-04-05T00:00:00.000000000', '2021-04-12T00:00:00.000000000', '2021-04-19T00:00:00.000000000', '2021-04-26T00:00:00.000000000', '2021-05-03T00:00:00.000000000', '2021-05-10T00:00:00.000000000', '2021-05-17T00:00:00.000000000', '2021-05-24T00:00:00.000000000', '2021-05-31T00:00:00.000000000', '2021-06-07T00:00:00.000000000', '2021-06-14T00:00:00.000000000', '2021-06-21T00:00:00.000000000', '2021-06-28T00:00:00.000000000', '2021-07-05T00:00:00.000000000', '2021-07-12T00:00:00.000000000', '2021-07-19T00:00:00.000000000', '2021-07-26T00:00:00.000000000', '2021-08-02T00:00:00.000000000', '2021-08-09T00:00:00.000000000', '2021-08-16T00:00:00.000000000', '2021-08-23T00:00:00.000000000', '2021-08-30T00:00:00.000000000'], dtype='datetime64[ns]') - geo(geo)<U5'geo_a' 'geo_b'
array(['geo_a', 'geo_b'], dtype='<U5')
- y(cv, chain, draw, date, geo)float642.658 2.098 9.111 ... 1.943 2.466
array([[[[[2.65783820e+00, 2.09768465e+00], [9.11126093e+00, 6.89427886e+00], [4.01825939e+00, 2.45978410e+00], ..., [2.93381472e-01, 3.07045108e+00], [5.49309973e-01, 1.77558321e+00], [5.06010334e+00, 2.37879374e+00]], [[7.56902577e-01, 1.24273238e+00], [6.19599905e-01, 1.37830848e+00], [4.74404899e-01, 1.64948172e+00], ..., [7.35428963e-01, 1.33509064e+00], [5.27645005e-01, 8.08386295e-01], [4.89730948e-01, 9.61719544e-01]], [[9.39612652e-01, 5.86519638e-02], [4.55454139e-01, 1.31807779e+00], [1.40442223e+00, 1.73677739e+00], ..., ... ..., [1.32080929e-04, 7.37401560e-01], [1.04991001e-04, 7.04571031e-01], [3.18531334e-04, 7.40905569e-01]], [[1.98821112e-01, 7.01500235e-01], [1.34883567e+00, 4.20923863e+00], [8.88130339e-01, 1.56120466e+00], ..., [9.01994989e-01, 1.45237924e+00], [3.29205215e-01, 1.49804648e+00], [1.69581321e+00, 7.45793970e-01]], [[3.36475822e-01, 1.39664899e+00], [3.27427362e+00, 5.25875594e-01], [7.00150299e-01, 2.25034966e+00], ..., [9.67359251e-01, 1.96734551e-01], [2.27851521e+00, 5.47812918e-01], [1.94334428e+00, 2.46641248e+00]]]]], shape=(5, 1, 1000, 179, 2))
- created_at :
- 2025-07-26T08:20:31.438500+00:00
- arviz_version :
- 0.21.0
- inference_library :
- pymc
- inference_library_version :
- 5.25.1
- pymc_marketing_version :
- 0.15.1
<xarray.Dataset> Size: 14MB Dimensions: (cv: 5, chain: 1, draw: 1000, date: 179, geo: 2) Coordinates: * cv (cv) object 40B 'Iteration 0' 'Iteration 1' ... 'Iteration 4' * chain (chain) int64 8B 0 * draw (draw) int64 8kB 0 1 2 3 4 5 6 7 ... 993 994 995 996 997 998 999 * date (date) datetime64[ns] 1kB 2018-04-02 2018-04-09 ... 2021-08-30 * geo (geo) <U5 40B 'geo_a' 'geo_b' Data variables: y (cv, chain, draw, date, geo) float64 14MB 2.658 2.098 ... 2.466 Attributes: created_at: 2025-07-26T08:20:31.438500+00:00 arviz_version: 0.21.0 inference_library: pymc inference_library_version: 5.25.1 pymc_marketing_version: 0.15.1xarray.Dataset -
- cv: 5
- date: 167
- geo: 2
- cv(cv)object'Iteration 0' ... 'Iteration 4'
array(['Iteration 0', 'Iteration 1', 'Iteration 2', 'Iteration 3', 'Iteration 4'], dtype=object) - date(date)datetime64[ns]2018-04-02 ... 2021-06-07
array(['2018-04-02T00:00:00.000000000', '2018-04-09T00:00:00.000000000', '2018-04-16T00:00:00.000000000', '2018-04-23T00:00:00.000000000', '2018-04-30T00:00:00.000000000', '2018-05-07T00:00:00.000000000', '2018-05-14T00:00:00.000000000', '2018-05-21T00:00:00.000000000', '2018-05-28T00:00:00.000000000', '2018-06-04T00:00:00.000000000', '2018-06-11T00:00:00.000000000', '2018-06-18T00:00:00.000000000', '2018-06-25T00:00:00.000000000', '2018-07-02T00:00:00.000000000', '2018-07-09T00:00:00.000000000', '2018-07-16T00:00:00.000000000', '2018-07-23T00:00:00.000000000', '2018-07-30T00:00:00.000000000', '2018-08-06T00:00:00.000000000', '2018-08-13T00:00:00.000000000', '2018-08-20T00:00:00.000000000', '2018-08-27T00:00:00.000000000', '2018-09-03T00:00:00.000000000', '2018-09-10T00:00:00.000000000', '2018-09-17T00:00:00.000000000', '2018-09-24T00:00:00.000000000', '2018-10-01T00:00:00.000000000', '2018-10-08T00:00:00.000000000', '2018-10-15T00:00:00.000000000', '2018-10-22T00:00:00.000000000', '2018-10-29T00:00:00.000000000', '2018-11-05T00:00:00.000000000', '2018-11-12T00:00:00.000000000', '2018-11-19T00:00:00.000000000', '2018-11-26T00:00:00.000000000', '2018-12-03T00:00:00.000000000', '2018-12-10T00:00:00.000000000', '2018-12-17T00:00:00.000000000', '2018-12-24T00:00:00.000000000', '2018-12-31T00:00:00.000000000', '2019-01-07T00:00:00.000000000', '2019-01-14T00:00:00.000000000', '2019-01-21T00:00:00.000000000', '2019-01-28T00:00:00.000000000', '2019-02-04T00:00:00.000000000', '2019-02-11T00:00:00.000000000', '2019-02-18T00:00:00.000000000', '2019-02-25T00:00:00.000000000', '2019-03-04T00:00:00.000000000', '2019-03-11T00:00:00.000000000', '2019-03-18T00:00:00.000000000', '2019-03-25T00:00:00.000000000', '2019-04-01T00:00:00.000000000', '2019-04-08T00:00:00.000000000', '2019-04-15T00:00:00.000000000', '2019-04-22T00:00:00.000000000', '2019-04-29T00:00:00.000000000', '2019-05-06T00:00:00.000000000', '2019-05-13T00:00:00.000000000', '2019-05-20T00:00:00.000000000', '2019-05-27T00:00:00.000000000', '2019-06-03T00:00:00.000000000', '2019-06-10T00:00:00.000000000', '2019-06-17T00:00:00.000000000', '2019-06-24T00:00:00.000000000', '2019-07-01T00:00:00.000000000', '2019-07-08T00:00:00.000000000', '2019-07-15T00:00:00.000000000', '2019-07-22T00:00:00.000000000', '2019-07-29T00:00:00.000000000', '2019-08-05T00:00:00.000000000', '2019-08-12T00:00:00.000000000', '2019-08-19T00:00:00.000000000', '2019-08-26T00:00:00.000000000', '2019-09-02T00:00:00.000000000', '2019-09-09T00:00:00.000000000', '2019-09-16T00:00:00.000000000', '2019-09-23T00:00:00.000000000', '2019-09-30T00:00:00.000000000', '2019-10-07T00:00:00.000000000', '2019-10-14T00:00:00.000000000', '2019-10-21T00:00:00.000000000', '2019-10-28T00:00:00.000000000', '2019-11-04T00:00:00.000000000', '2019-11-11T00:00:00.000000000', '2019-11-18T00:00:00.000000000', '2019-11-25T00:00:00.000000000', '2019-12-02T00:00:00.000000000', '2019-12-09T00:00:00.000000000', '2019-12-16T00:00:00.000000000', '2019-12-23T00:00:00.000000000', '2019-12-30T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-13T00:00:00.000000000', '2020-01-20T00:00:00.000000000', '2020-01-27T00:00:00.000000000', '2020-02-03T00:00:00.000000000', '2020-02-10T00:00:00.000000000', '2020-02-17T00:00:00.000000000', '2020-02-24T00:00:00.000000000', '2020-03-02T00:00:00.000000000', '2020-03-09T00:00:00.000000000', '2020-03-16T00:00:00.000000000', '2020-03-23T00:00:00.000000000', '2020-03-30T00:00:00.000000000', '2020-04-06T00:00:00.000000000', '2020-04-13T00:00:00.000000000', '2020-04-20T00:00:00.000000000', '2020-04-27T00:00:00.000000000', '2020-05-04T00:00:00.000000000', '2020-05-11T00:00:00.000000000', '2020-05-18T00:00:00.000000000', '2020-05-25T00:00:00.000000000', '2020-06-01T00:00:00.000000000', '2020-06-08T00:00:00.000000000', '2020-06-15T00:00:00.000000000', '2020-06-22T00:00:00.000000000', '2020-06-29T00:00:00.000000000', '2020-07-06T00:00:00.000000000', '2020-07-13T00:00:00.000000000', '2020-07-20T00:00:00.000000000', '2020-07-27T00:00:00.000000000', '2020-08-03T00:00:00.000000000', '2020-08-10T00:00:00.000000000', '2020-08-17T00:00:00.000000000', '2020-08-24T00:00:00.000000000', '2020-08-31T00:00:00.000000000', '2020-09-07T00:00:00.000000000', '2020-09-14T00:00:00.000000000', '2020-09-21T00:00:00.000000000', '2020-09-28T00:00:00.000000000', '2020-10-05T00:00:00.000000000', '2020-10-12T00:00:00.000000000', '2020-10-19T00:00:00.000000000', '2020-10-26T00:00:00.000000000', '2020-11-02T00:00:00.000000000', '2020-11-09T00:00:00.000000000', '2020-11-16T00:00:00.000000000', '2020-11-23T00:00:00.000000000', '2020-11-30T00:00:00.000000000', '2020-12-07T00:00:00.000000000', '2020-12-14T00:00:00.000000000', '2020-12-21T00:00:00.000000000', '2020-12-28T00:00:00.000000000', '2021-01-04T00:00:00.000000000', '2021-01-11T00:00:00.000000000', '2021-01-18T00:00:00.000000000', '2021-01-25T00:00:00.000000000', '2021-02-01T00:00:00.000000000', '2021-02-08T00:00:00.000000000', '2021-02-15T00:00:00.000000000', '2021-02-22T00:00:00.000000000', '2021-03-01T00:00:00.000000000', '2021-03-08T00:00:00.000000000', '2021-03-15T00:00:00.000000000', '2021-03-22T00:00:00.000000000', '2021-03-29T00:00:00.000000000', '2021-04-05T00:00:00.000000000', '2021-04-12T00:00:00.000000000', '2021-04-19T00:00:00.000000000', '2021-04-26T00:00:00.000000000', '2021-05-03T00:00:00.000000000', '2021-05-10T00:00:00.000000000', '2021-05-17T00:00:00.000000000', '2021-05-24T00:00:00.000000000', '2021-05-31T00:00:00.000000000', '2021-06-07T00:00:00.000000000'], dtype='datetime64[ns]') - geo(geo)<U5'geo_a' 'geo_b'
array(['geo_a', 'geo_b'], dtype='<U5')
- y(cv, date, geo)float640.4794 0.5206 ... 0.6063 0.5798
array([[[0.47936319, 0.52064014], [0.45268134, 0.43218441], [0.53738551, 0.48782856], ..., [ nan, nan], [ nan, nan], [ nan, nan]], [[0.47936319, 0.52064014], [0.45268134, 0.43218441], [0.53738551, 0.48782856], ..., [ nan, nan], [ nan, nan], [ nan, nan]], [[0.47936319, 0.52064014], [0.45268134, 0.43218441], [0.53738551, 0.48782856], ..., [0.70912897, 0.65098563], [ nan, nan], [ nan, nan]], [[0.47936319, 0.52064014], [0.45268134, 0.43218441], [0.53738551, 0.48782856], ..., [0.70912897, 0.65098563], [0.66280698, 0.61752649], [ nan, nan]], [[0.47936319, 0.52064014], [0.45268134, 0.43218441], [0.53738551, 0.48782856], ..., [0.70912897, 0.65098563], [0.66280698, 0.61752649], [0.60631287, 0.57982278]]], shape=(5, 167, 2))
- created_at :
- 2025-12-20T13:44:59.258392+00:00
- arviz_version :
- 0.22.0
- inference_library :
- numpyro
- inference_library_version :
- 0.19.0
- sampling_time :
- 7.597176
- tuning_steps :
- 1000
<xarray.Dataset> Size: 15kB Dimensions: (cv: 5, date: 167, geo: 2) Coordinates: * cv (cv) object 40B 'Iteration 0' 'Iteration 1' ... 'Iteration 4' * date (date) datetime64[ns] 1kB 2018-04-02 2018-04-09 ... 2021-06-07 * geo (geo) <U5 40B 'geo_a' 'geo_b' Data variables: y (cv, date, geo) float64 13kB 0.4794 0.5206 0.4527 ... 0.6063 0.5798 Attributes: created_at: 2025-12-20T13:44:59.258392+00:00 arviz_version: 0.22.0 inference_library: numpyro inference_library_version: 0.19.0 sampling_time: 7.597176 tuning_steps: 1000xarray.Dataset -
- cv: 5
- date: 167
- geo: 2
- channel: 2
- control: 2
- cv(cv)object'Iteration 0' ... 'Iteration 4'
array(['Iteration 0', 'Iteration 1', 'Iteration 2', 'Iteration 3', 'Iteration 4'], dtype=object) - date(date)datetime64[ns]2018-04-02 ... 2021-06-07
array(['2018-04-02T00:00:00.000000000', '2018-04-09T00:00:00.000000000', '2018-04-16T00:00:00.000000000', '2018-04-23T00:00:00.000000000', '2018-04-30T00:00:00.000000000', '2018-05-07T00:00:00.000000000', '2018-05-14T00:00:00.000000000', '2018-05-21T00:00:00.000000000', '2018-05-28T00:00:00.000000000', '2018-06-04T00:00:00.000000000', '2018-06-11T00:00:00.000000000', '2018-06-18T00:00:00.000000000', '2018-06-25T00:00:00.000000000', '2018-07-02T00:00:00.000000000', '2018-07-09T00:00:00.000000000', '2018-07-16T00:00:00.000000000', '2018-07-23T00:00:00.000000000', '2018-07-30T00:00:00.000000000', '2018-08-06T00:00:00.000000000', '2018-08-13T00:00:00.000000000', '2018-08-20T00:00:00.000000000', '2018-08-27T00:00:00.000000000', '2018-09-03T00:00:00.000000000', '2018-09-10T00:00:00.000000000', '2018-09-17T00:00:00.000000000', '2018-09-24T00:00:00.000000000', '2018-10-01T00:00:00.000000000', '2018-10-08T00:00:00.000000000', '2018-10-15T00:00:00.000000000', '2018-10-22T00:00:00.000000000', '2018-10-29T00:00:00.000000000', '2018-11-05T00:00:00.000000000', '2018-11-12T00:00:00.000000000', '2018-11-19T00:00:00.000000000', '2018-11-26T00:00:00.000000000', '2018-12-03T00:00:00.000000000', '2018-12-10T00:00:00.000000000', '2018-12-17T00:00:00.000000000', '2018-12-24T00:00:00.000000000', '2018-12-31T00:00:00.000000000', '2019-01-07T00:00:00.000000000', '2019-01-14T00:00:00.000000000', '2019-01-21T00:00:00.000000000', '2019-01-28T00:00:00.000000000', '2019-02-04T00:00:00.000000000', '2019-02-11T00:00:00.000000000', '2019-02-18T00:00:00.000000000', '2019-02-25T00:00:00.000000000', '2019-03-04T00:00:00.000000000', '2019-03-11T00:00:00.000000000', '2019-03-18T00:00:00.000000000', '2019-03-25T00:00:00.000000000', '2019-04-01T00:00:00.000000000', '2019-04-08T00:00:00.000000000', '2019-04-15T00:00:00.000000000', '2019-04-22T00:00:00.000000000', '2019-04-29T00:00:00.000000000', '2019-05-06T00:00:00.000000000', '2019-05-13T00:00:00.000000000', '2019-05-20T00:00:00.000000000', '2019-05-27T00:00:00.000000000', '2019-06-03T00:00:00.000000000', '2019-06-10T00:00:00.000000000', '2019-06-17T00:00:00.000000000', '2019-06-24T00:00:00.000000000', '2019-07-01T00:00:00.000000000', '2019-07-08T00:00:00.000000000', '2019-07-15T00:00:00.000000000', '2019-07-22T00:00:00.000000000', '2019-07-29T00:00:00.000000000', '2019-08-05T00:00:00.000000000', '2019-08-12T00:00:00.000000000', '2019-08-19T00:00:00.000000000', '2019-08-26T00:00:00.000000000', '2019-09-02T00:00:00.000000000', '2019-09-09T00:00:00.000000000', '2019-09-16T00:00:00.000000000', '2019-09-23T00:00:00.000000000', '2019-09-30T00:00:00.000000000', '2019-10-07T00:00:00.000000000', '2019-10-14T00:00:00.000000000', '2019-10-21T00:00:00.000000000', '2019-10-28T00:00:00.000000000', '2019-11-04T00:00:00.000000000', '2019-11-11T00:00:00.000000000', '2019-11-18T00:00:00.000000000', '2019-11-25T00:00:00.000000000', '2019-12-02T00:00:00.000000000', '2019-12-09T00:00:00.000000000', '2019-12-16T00:00:00.000000000', '2019-12-23T00:00:00.000000000', '2019-12-30T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-13T00:00:00.000000000', '2020-01-20T00:00:00.000000000', '2020-01-27T00:00:00.000000000', '2020-02-03T00:00:00.000000000', '2020-02-10T00:00:00.000000000', '2020-02-17T00:00:00.000000000', '2020-02-24T00:00:00.000000000', '2020-03-02T00:00:00.000000000', '2020-03-09T00:00:00.000000000', '2020-03-16T00:00:00.000000000', '2020-03-23T00:00:00.000000000', '2020-03-30T00:00:00.000000000', '2020-04-06T00:00:00.000000000', '2020-04-13T00:00:00.000000000', '2020-04-20T00:00:00.000000000', '2020-04-27T00:00:00.000000000', '2020-05-04T00:00:00.000000000', '2020-05-11T00:00:00.000000000', '2020-05-18T00:00:00.000000000', '2020-05-25T00:00:00.000000000', '2020-06-01T00:00:00.000000000', '2020-06-08T00:00:00.000000000', '2020-06-15T00:00:00.000000000', '2020-06-22T00:00:00.000000000', '2020-06-29T00:00:00.000000000', '2020-07-06T00:00:00.000000000', '2020-07-13T00:00:00.000000000', '2020-07-20T00:00:00.000000000', '2020-07-27T00:00:00.000000000', '2020-08-03T00:00:00.000000000', '2020-08-10T00:00:00.000000000', '2020-08-17T00:00:00.000000000', '2020-08-24T00:00:00.000000000', '2020-08-31T00:00:00.000000000', '2020-09-07T00:00:00.000000000', '2020-09-14T00:00:00.000000000', '2020-09-21T00:00:00.000000000', '2020-09-28T00:00:00.000000000', '2020-10-05T00:00:00.000000000', '2020-10-12T00:00:00.000000000', '2020-10-19T00:00:00.000000000', '2020-10-26T00:00:00.000000000', '2020-11-02T00:00:00.000000000', '2020-11-09T00:00:00.000000000', '2020-11-16T00:00:00.000000000', '2020-11-23T00:00:00.000000000', '2020-11-30T00:00:00.000000000', '2020-12-07T00:00:00.000000000', '2020-12-14T00:00:00.000000000', '2020-12-21T00:00:00.000000000', '2020-12-28T00:00:00.000000000', '2021-01-04T00:00:00.000000000', '2021-01-11T00:00:00.000000000', '2021-01-18T00:00:00.000000000', '2021-01-25T00:00:00.000000000', '2021-02-01T00:00:00.000000000', '2021-02-08T00:00:00.000000000', '2021-02-15T00:00:00.000000000', '2021-02-22T00:00:00.000000000', '2021-03-01T00:00:00.000000000', '2021-03-08T00:00:00.000000000', '2021-03-15T00:00:00.000000000', '2021-03-22T00:00:00.000000000', '2021-03-29T00:00:00.000000000', '2021-04-05T00:00:00.000000000', '2021-04-12T00:00:00.000000000', '2021-04-19T00:00:00.000000000', '2021-04-26T00:00:00.000000000', '2021-05-03T00:00:00.000000000', '2021-05-10T00:00:00.000000000', '2021-05-17T00:00:00.000000000', '2021-05-24T00:00:00.000000000', '2021-05-31T00:00:00.000000000', '2021-06-07T00:00:00.000000000'], dtype='datetime64[ns]') - geo(geo)<U5'geo_a' 'geo_b'
array(['geo_a', 'geo_b'], dtype='<U5')
- channel(channel)<U2'x1' 'x2'
array(['x1', 'x2'], dtype='<U2')
- control(control)<U7'event_1' 'event_2'
array(['event_1', 'event_2'], dtype='<U7')
- channel_data(cv, date, geo, channel)float64159.3 0.0 159.3 ... 0.0 72.29 0.0
array([[[[159.29000897, 0. ], [159.29000897, 0. ]], [[ 56.19423822, 0. ], [ 56.19423822, 0. ]], [[146.20013314, 0. ], [146.20013314, 0. ]], ..., [[ nan, nan], [ nan, nan]], [[ nan, nan], [ nan, nan]], [[ nan, nan], [ nan, nan]]], ... [[[159.29000897, 0. ], [159.29000897, 0. ]], [[ 56.19423822, 0. ], [ 56.19423822, 0. ]], [[146.20013314, 0. ], [146.20013314, 0. ]], ..., [[156.68560723, 0. ], [156.68560723, 0. ]], [[199.66970616, 0. ], [199.66970616, 0. ]], [[ 72.29216764, 0. ], [ 72.29216764, 0. ]]]], shape=(5, 167, 2, 2)) - channel_scale(cv, geo, channel)float64498.3 497.2 498.3 ... 498.3 497.2
array([[[498.32906453, 497.18715583], [498.32906453, 497.18715583]], [[498.32906453, 497.18715583], [498.32906453, 497.18715583]], [[498.32906453, 497.18715583], [498.32906453, 497.18715583]], [[498.32906453, 497.18715583], [498.32906453, 497.18715583]], [[498.32906453, 497.18715583], [498.32906453, 497.18715583]]]) - control_data(cv, date, geo, control)float640.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
array([[[[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]], ..., [[nan, nan], [nan, nan]], [[nan, nan], [nan, nan]], [[nan, nan], [nan, nan]]], ... [[[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]], ..., [[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]]]], shape=(5, 167, 2, 2)) - dayofyear(cv, date)float6492.0 99.0 106.0 ... 151.0 158.0
array([[ 92., 99., 106., 113., 120., 127., 134., 141., 148., 155., 162., 169., 176., 183., 190., 197., 204., 211., 218., 225., 232., 239., 246., 253., 260., 267., 274., 281., 288., 295., 302., 309., 316., 323., 330., 337., 344., 351., 358., 365., 7., 14., 21., 28., 35., 42., 49., 56., 63., 70., 77., 84., 91., 98., 105., 112., 119., 126., 133., 140., 147., 154., 161., 168., 175., 182., 189., 196., 203., 210., 217., 224., 231., 238., 245., 252., 259., 266., 273., 280., 287., 294., 301., 308., 315., 322., 329., 336., 343., 350., 357., 364., 6., 13., 20., 27., 34., 41., 48., 55., 62., 69., 76., 83., 90., 97., 104., 111., 118., 125., 132., 139., 146., 153., 160., 167., 174., 181., 188., 195., 202., 209., 216., 223., 230., 237., 244., 251., 258., 265., 272., 279., 286., 293., 300., 307., 314., 321., 328., 335., 342., 349., 356., 363., 4., 11., 18., 25., 32., 39., 46., 53., 60., 67., 74., 81., 88., 95., 102., 109., 116., 123., 130., nan, nan, nan, nan], [ 92., 99., 106., 113., 120., 127., 134., 141., 148., 155., 162., 169., 176., 183., 190., 197., 204., 211., 218., 225., 232., 239., 246., 253., 260., 267., 274., 281., 288., 295., 302., 309., 316., 323., 330., 337., 344., 351., 358., 365., 7., 14., 21., 28., ... 286., 293., 300., 307., 314., 321., 328., 335., 342., 349., 356., 363., 4., 11., 18., 25., 32., 39., 46., 53., 60., 67., 74., 81., 88., 95., 102., 109., 116., 123., 130., 137., 144., 151., nan], [ 92., 99., 106., 113., 120., 127., 134., 141., 148., 155., 162., 169., 176., 183., 190., 197., 204., 211., 218., 225., 232., 239., 246., 253., 260., 267., 274., 281., 288., 295., 302., 309., 316., 323., 330., 337., 344., 351., 358., 365., 7., 14., 21., 28., 35., 42., 49., 56., 63., 70., 77., 84., 91., 98., 105., 112., 119., 126., 133., 140., 147., 154., 161., 168., 175., 182., 189., 196., 203., 210., 217., 224., 231., 238., 245., 252., 259., 266., 273., 280., 287., 294., 301., 308., 315., 322., 329., 336., 343., 350., 357., 364., 6., 13., 20., 27., 34., 41., 48., 55., 62., 69., 76., 83., 90., 97., 104., 111., 118., 125., 132., 139., 146., 153., 160., 167., 174., 181., 188., 195., 202., 209., 216., 223., 230., 237., 244., 251., 258., 265., 272., 279., 286., 293., 300., 307., 314., 321., 328., 335., 342., 349., 356., 363., 4., 11., 18., 25., 32., 39., 46., 53., 60., 67., 74., 81., 88., 95., 102., 109., 116., 123., 130., 137., 144., 151., 158.]]) - target_data(cv, date, geo)float643.985e+03 4.395e+03 ... 4.894e+03
array([[[3984.66223734, 4394.54729449], [3762.87179412, 3647.92239757], [4466.96738844, 4117.59583185], ..., [ nan, nan], [ nan, nan], [ nan, nan]], [[3984.66223734, 4394.54729449], [3762.87179412, 3647.92239757], [4466.96738844, 4117.59583185], ..., [ nan, nan], [ nan, nan], [ nan, nan]], [[3984.66223734, 4394.54729449], [3762.87179412, 3647.92239757], [4466.96738844, 4117.59583185], ..., [5894.56896391, 5494.74952642], [ nan, nan], [ nan, nan]], [[3984.66223734, 4394.54729449], [3762.87179412, 3647.92239757], [4466.96738844, 4117.59583185], ..., [5894.56896391, 5494.74952642], [5509.52170002, 5212.33225555], [ nan, nan]], [[3984.66223734, 4394.54729449], [3762.87179412, 3647.92239757], [4466.96738844, 4117.59583185], ..., [5894.56896391, 5494.74952642], [5509.52170002, 5212.33225555], [5039.91969411, 4894.0879462 ]]], shape=(5, 167, 2)) - target_scale(cv, geo)float648.312e+03 8.441e+03 ... 8.441e+03
array([[8312.40754439, 8440.6617456 ], [8312.40754439, 8440.6617456 ], [8312.40754439, 8440.6617456 ], [8312.40754439, 8440.6617456 ], [8312.40754439, 8440.6617456 ]]) - trend_t(cv, date)float640.0 7.0 ... 1.155e+03 1.162e+03
array([[ 0., 7., 14., 21., 28., 35., 42., 49., 56., 63., 70., 77., 84., 91., 98., 105., 112., 119., 126., 133., 140., 147., 154., 161., 168., 175., 182., 189., 196., 203., 210., 217., 224., 231., 238., 245., 252., 259., 266., 273., 280., 287., 294., 301., 308., 315., 322., 329., 336., 343., 350., 357., 364., 371., 378., 385., 392., 399., 406., 413., 420., 427., 434., 441., 448., 455., 462., 469., 476., 483., 490., 497., 504., 511., 518., 525., 532., 539., 546., 553., 560., 567., 574., 581., 588., 595., 602., 609., 616., 623., 630., 637., 644., 651., 658., 665., 672., 679., 686., 693., 700., 707., 714., 721., 728., 735., 742., 749., 756., 763., 770., 777., 784., 791., 798., 805., 812., 819., 826., 833., 840., 847., 854., 861., 868., 875., 882., 889., 896., 903., 910., 917., 924., 931., 938., 945., 952., 959., 966., 973., 980., 987., 994., 1001., 1008., 1015., 1022., 1029., 1036., 1043., 1050., 1057., 1064., 1071., 1078., 1085., 1092., 1099., 1106., 1113., 1120., 1127., 1134., nan, nan, nan, nan], [ 0., 7., 14., 21., 28., 35., 42., 49., 56., ... 1134., 1141., 1148., 1155., nan], [ 0., 7., 14., 21., 28., 35., 42., 49., 56., 63., 70., 77., 84., 91., 98., 105., 112., 119., 126., 133., 140., 147., 154., 161., 168., 175., 182., 189., 196., 203., 210., 217., 224., 231., 238., 245., 252., 259., 266., 273., 280., 287., 294., 301., 308., 315., 322., 329., 336., 343., 350., 357., 364., 371., 378., 385., 392., 399., 406., 413., 420., 427., 434., 441., 448., 455., 462., 469., 476., 483., 490., 497., 504., 511., 518., 525., 532., 539., 546., 553., 560., 567., 574., 581., 588., 595., 602., 609., 616., 623., 630., 637., 644., 651., 658., 665., 672., 679., 686., 693., 700., 707., 714., 721., 728., 735., 742., 749., 756., 763., 770., 777., 784., 791., 798., 805., 812., 819., 826., 833., 840., 847., 854., 861., 868., 875., 882., 889., 896., 903., 910., 917., 924., 931., 938., 945., 952., 959., 966., 973., 980., 987., 994., 1001., 1008., 1015., 1022., 1029., 1036., 1043., 1050., 1057., 1064., 1071., 1078., 1085., 1092., 1099., 1106., 1113., 1120., 1127., 1134., 1141., 1148., 1155., 1162.]])
- created_at :
- 2025-12-20T13:44:59.260742+00:00
- arviz_version :
- 0.22.0
- inference_library :
- numpyro
- inference_library_version :
- 0.19.0
- sampling_time :
- 7.597176
- tuning_steps :
- 1000
<xarray.Dataset> Size: 82kB Dimensions: (cv: 5, date: 167, geo: 2, channel: 2, control: 2) Coordinates: * cv (cv) object 40B 'Iteration 0' 'Iteration 1' ... 'Iteration 4' * date (date) datetime64[ns] 1kB 2018-04-02 ... 2021-06-07 * geo (geo) <U5 40B 'geo_a' 'geo_b' * channel (channel) <U2 16B 'x1' 'x2' * control (control) <U7 56B 'event_1' 'event_2' Data variables: channel_data (cv, date, geo, channel) float64 27kB 159.3 0.0 ... 72.29 0.0 channel_scale (cv, geo, channel) float64 160B 498.3 497.2 ... 498.3 497.2 control_data (cv, date, geo, control) float64 27kB 0.0 0.0 0.0 ... 0.0 0.0 dayofyear (cv, date) float64 7kB 92.0 99.0 106.0 ... 144.0 151.0 158.0 target_data (cv, date, geo) float64 13kB 3.985e+03 ... 4.894e+03 target_scale (cv, geo) float64 80B 8.312e+03 8.441e+03 ... 8.441e+03 trend_t (cv, date) float64 7kB 0.0 7.0 14.0 ... 1.155e+03 1.162e+03 Attributes: created_at: 2025-12-20T13:44:59.260742+00:00 arviz_version: 0.22.0 inference_library: numpyro inference_library_version: 0.19.0 sampling_time: 7.597176 tuning_steps: 1000xarray.Dataset -
- cv: 5
- date: 167
- geo: 2
- cv(cv)object'Iteration 0' ... 'Iteration 4'
array(['Iteration 0', 'Iteration 1', 'Iteration 2', 'Iteration 3', 'Iteration 4'], dtype=object) - date(date)datetime64[ns]2018-04-02 ... 2021-06-07
array(['2018-04-02T00:00:00.000000000', '2018-04-09T00:00:00.000000000', '2018-04-16T00:00:00.000000000', '2018-04-23T00:00:00.000000000', '2018-04-30T00:00:00.000000000', '2018-05-07T00:00:00.000000000', '2018-05-14T00:00:00.000000000', '2018-05-21T00:00:00.000000000', '2018-05-28T00:00:00.000000000', '2018-06-04T00:00:00.000000000', '2018-06-11T00:00:00.000000000', '2018-06-18T00:00:00.000000000', '2018-06-25T00:00:00.000000000', '2018-07-02T00:00:00.000000000', '2018-07-09T00:00:00.000000000', '2018-07-16T00:00:00.000000000', '2018-07-23T00:00:00.000000000', '2018-07-30T00:00:00.000000000', '2018-08-06T00:00:00.000000000', '2018-08-13T00:00:00.000000000', '2018-08-20T00:00:00.000000000', '2018-08-27T00:00:00.000000000', '2018-09-03T00:00:00.000000000', '2018-09-10T00:00:00.000000000', '2018-09-17T00:00:00.000000000', '2018-09-24T00:00:00.000000000', '2018-10-01T00:00:00.000000000', '2018-10-08T00:00:00.000000000', '2018-10-15T00:00:00.000000000', '2018-10-22T00:00:00.000000000', '2018-10-29T00:00:00.000000000', '2018-11-05T00:00:00.000000000', '2018-11-12T00:00:00.000000000', '2018-11-19T00:00:00.000000000', '2018-11-26T00:00:00.000000000', '2018-12-03T00:00:00.000000000', '2018-12-10T00:00:00.000000000', '2018-12-17T00:00:00.000000000', '2018-12-24T00:00:00.000000000', '2018-12-31T00:00:00.000000000', '2019-01-07T00:00:00.000000000', '2019-01-14T00:00:00.000000000', '2019-01-21T00:00:00.000000000', '2019-01-28T00:00:00.000000000', '2019-02-04T00:00:00.000000000', '2019-02-11T00:00:00.000000000', '2019-02-18T00:00:00.000000000', '2019-02-25T00:00:00.000000000', '2019-03-04T00:00:00.000000000', '2019-03-11T00:00:00.000000000', '2019-03-18T00:00:00.000000000', '2019-03-25T00:00:00.000000000', '2019-04-01T00:00:00.000000000', '2019-04-08T00:00:00.000000000', '2019-04-15T00:00:00.000000000', '2019-04-22T00:00:00.000000000', '2019-04-29T00:00:00.000000000', '2019-05-06T00:00:00.000000000', '2019-05-13T00:00:00.000000000', '2019-05-20T00:00:00.000000000', '2019-05-27T00:00:00.000000000', '2019-06-03T00:00:00.000000000', '2019-06-10T00:00:00.000000000', '2019-06-17T00:00:00.000000000', '2019-06-24T00:00:00.000000000', '2019-07-01T00:00:00.000000000', '2019-07-08T00:00:00.000000000', '2019-07-15T00:00:00.000000000', '2019-07-22T00:00:00.000000000', '2019-07-29T00:00:00.000000000', '2019-08-05T00:00:00.000000000', '2019-08-12T00:00:00.000000000', '2019-08-19T00:00:00.000000000', '2019-08-26T00:00:00.000000000', '2019-09-02T00:00:00.000000000', '2019-09-09T00:00:00.000000000', '2019-09-16T00:00:00.000000000', '2019-09-23T00:00:00.000000000', '2019-09-30T00:00:00.000000000', '2019-10-07T00:00:00.000000000', '2019-10-14T00:00:00.000000000', '2019-10-21T00:00:00.000000000', '2019-10-28T00:00:00.000000000', '2019-11-04T00:00:00.000000000', '2019-11-11T00:00:00.000000000', '2019-11-18T00:00:00.000000000', '2019-11-25T00:00:00.000000000', '2019-12-02T00:00:00.000000000', '2019-12-09T00:00:00.000000000', '2019-12-16T00:00:00.000000000', '2019-12-23T00:00:00.000000000', '2019-12-30T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-13T00:00:00.000000000', '2020-01-20T00:00:00.000000000', '2020-01-27T00:00:00.000000000', '2020-02-03T00:00:00.000000000', '2020-02-10T00:00:00.000000000', '2020-02-17T00:00:00.000000000', '2020-02-24T00:00:00.000000000', '2020-03-02T00:00:00.000000000', '2020-03-09T00:00:00.000000000', '2020-03-16T00:00:00.000000000', '2020-03-23T00:00:00.000000000', '2020-03-30T00:00:00.000000000', '2020-04-06T00:00:00.000000000', '2020-04-13T00:00:00.000000000', '2020-04-20T00:00:00.000000000', '2020-04-27T00:00:00.000000000', '2020-05-04T00:00:00.000000000', '2020-05-11T00:00:00.000000000', '2020-05-18T00:00:00.000000000', '2020-05-25T00:00:00.000000000', '2020-06-01T00:00:00.000000000', '2020-06-08T00:00:00.000000000', '2020-06-15T00:00:00.000000000', '2020-06-22T00:00:00.000000000', '2020-06-29T00:00:00.000000000', '2020-07-06T00:00:00.000000000', '2020-07-13T00:00:00.000000000', '2020-07-20T00:00:00.000000000', '2020-07-27T00:00:00.000000000', '2020-08-03T00:00:00.000000000', '2020-08-10T00:00:00.000000000', '2020-08-17T00:00:00.000000000', '2020-08-24T00:00:00.000000000', '2020-08-31T00:00:00.000000000', '2020-09-07T00:00:00.000000000', '2020-09-14T00:00:00.000000000', '2020-09-21T00:00:00.000000000', '2020-09-28T00:00:00.000000000', '2020-10-05T00:00:00.000000000', '2020-10-12T00:00:00.000000000', '2020-10-19T00:00:00.000000000', '2020-10-26T00:00:00.000000000', '2020-11-02T00:00:00.000000000', '2020-11-09T00:00:00.000000000', '2020-11-16T00:00:00.000000000', '2020-11-23T00:00:00.000000000', '2020-11-30T00:00:00.000000000', '2020-12-07T00:00:00.000000000', '2020-12-14T00:00:00.000000000', '2020-12-21T00:00:00.000000000', '2020-12-28T00:00:00.000000000', '2021-01-04T00:00:00.000000000', '2021-01-11T00:00:00.000000000', '2021-01-18T00:00:00.000000000', '2021-01-25T00:00:00.000000000', '2021-02-01T00:00:00.000000000', '2021-02-08T00:00:00.000000000', '2021-02-15T00:00:00.000000000', '2021-02-22T00:00:00.000000000', '2021-03-01T00:00:00.000000000', '2021-03-08T00:00:00.000000000', '2021-03-15T00:00:00.000000000', '2021-03-22T00:00:00.000000000', '2021-03-29T00:00:00.000000000', '2021-04-05T00:00:00.000000000', '2021-04-12T00:00:00.000000000', '2021-04-19T00:00:00.000000000', '2021-04-26T00:00:00.000000000', '2021-05-03T00:00:00.000000000', '2021-05-10T00:00:00.000000000', '2021-05-17T00:00:00.000000000', '2021-05-24T00:00:00.000000000', '2021-05-31T00:00:00.000000000', '2021-06-07T00:00:00.000000000'], dtype='datetime64[ns]') - geo(geo)object'geo_a' 'geo_b'
array(['geo_a', 'geo_b'], dtype=object)
- x1(cv, date, geo)float64159.3 159.3 56.19 ... 72.29 72.29
array([[[159.29000897, 159.29000897], [ 56.19423822, 56.19423822], [146.20013314, 146.20013314], ..., [ nan, nan], [ nan, nan], [ nan, nan]], [[159.29000897, 159.29000897], [ 56.19423822, 56.19423822], [146.20013314, 146.20013314], ..., [ nan, nan], [ nan, nan], [ nan, nan]], [[159.29000897, 159.29000897], [ 56.19423822, 56.19423822], [146.20013314, 146.20013314], ..., [156.68560723, 156.68560723], [ nan, nan], [ nan, nan]], [[159.29000897, 159.29000897], [ 56.19423822, 56.19423822], [146.20013314, 146.20013314], ..., [156.68560723, 156.68560723], [199.66970616, 199.66970616], [ nan, nan]], [[159.29000897, 159.29000897], [ 56.19423822, 56.19423822], [146.20013314, 146.20013314], ..., [156.68560723, 156.68560723], [199.66970616, 199.66970616], [ 72.29216764, 72.29216764]]], shape=(5, 167, 2)) - x2(cv, date, geo)float640.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
array([[[ 0., 0.], [ 0., 0.], [ 0., 0.], ..., [nan, nan], [nan, nan], [nan, nan]], [[ 0., 0.], [ 0., 0.], [ 0., 0.], ..., [nan, nan], [nan, nan], [nan, nan]], [[ 0., 0.], [ 0., 0.], [ 0., 0.], ..., [ 0., 0.], [nan, nan], [nan, nan]], [[ 0., 0.], [ 0., 0.], [ 0., 0.], ..., [ 0., 0.], [ 0., 0.], [nan, nan]], [[ 0., 0.], [ 0., 0.], [ 0., 0.], ..., [ 0., 0.], [ 0., 0.], [ 0., 0.]]], shape=(5, 167, 2)) - event_1(cv, date, geo)float640.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
array([[[ 0., 0.], [ 0., 0.], [ 0., 0.], ..., [nan, nan], [nan, nan], [nan, nan]], [[ 0., 0.], [ 0., 0.], [ 0., 0.], ..., [nan, nan], [nan, nan], [nan, nan]], [[ 0., 0.], [ 0., 0.], [ 0., 0.], ..., [ 0., 0.], [nan, nan], [nan, nan]], [[ 0., 0.], [ 0., 0.], [ 0., 0.], ..., [ 0., 0.], [ 0., 0.], [nan, nan]], [[ 0., 0.], [ 0., 0.], [ 0., 0.], ..., [ 0., 0.], [ 0., 0.], [ 0., 0.]]], shape=(5, 167, 2)) - event_2(cv, date, geo)float640.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
array([[[ 0., 0.], [ 0., 0.], [ 0., 0.], ..., [nan, nan], [nan, nan], [nan, nan]], [[ 0., 0.], [ 0., 0.], [ 0., 0.], ..., [nan, nan], [nan, nan], [nan, nan]], [[ 0., 0.], [ 0., 0.], [ 0., 0.], ..., [ 0., 0.], [nan, nan], [nan, nan]], [[ 0., 0.], [ 0., 0.], [ 0., 0.], ..., [ 0., 0.], [ 0., 0.], [nan, nan]], [[ 0., 0.], [ 0., 0.], [ 0., 0.], ..., [ 0., 0.], [ 0., 0.], [ 0., 0.]]], shape=(5, 167, 2)) - dayofyear(cv, date, geo)float6492.0 92.0 99.0 ... 158.0 158.0
array([[[ 92., 92.], [ 99., 99.], [106., 106.], ..., [ nan, nan], [ nan, nan], [ nan, nan]], [[ 92., 92.], [ 99., 99.], [106., 106.], ..., [ nan, nan], [ nan, nan], [ nan, nan]], [[ 92., 92.], [ 99., 99.], [106., 106.], ..., [144., 144.], [ nan, nan], [ nan, nan]], [[ 92., 92.], [ 99., 99.], [106., 106.], ..., [144., 144.], [151., 151.], [ nan, nan]], [[ 92., 92.], [ 99., 99.], [106., 106.], ..., [144., 144.], [151., 151.], [158., 158.]]], shape=(5, 167, 2)) - t(cv, date, geo)float640.0 0.0 1.0 ... 165.0 166.0 166.0
array([[[ 0., 0.], [ 1., 1.], [ 2., 2.], ..., [ nan, nan], [ nan, nan], [ nan, nan]], [[ 0., 0.], [ 1., 1.], [ 2., 2.], ..., [ nan, nan], [ nan, nan], [ nan, nan]], [[ 0., 0.], [ 1., 1.], [ 2., 2.], ..., [164., 164.], [ nan, nan], [ nan, nan]], [[ 0., 0.], [ 1., 1.], [ 2., 2.], ..., [164., 164.], [165., 165.], [ nan, nan]], [[ 0., 0.], [ 1., 1.], [ 2., 2.], ..., [164., 164.], [165., 165.], [166., 166.]]], shape=(5, 167, 2)) - y(cv, date, geo)float643.985e+03 4.395e+03 ... 4.894e+03
array([[[3984.66223734, 4394.54729449], [3762.87179412, 3647.92239757], [4466.96738844, 4117.59583185], ..., [ nan, nan], [ nan, nan], [ nan, nan]], [[3984.66223734, 4394.54729449], [3762.87179412, 3647.92239757], [4466.96738844, 4117.59583185], ..., [ nan, nan], [ nan, nan], [ nan, nan]], [[3984.66223734, 4394.54729449], [3762.87179412, 3647.92239757], [4466.96738844, 4117.59583185], ..., [5894.56896391, 5494.74952642], [ nan, nan], [ nan, nan]], [[3984.66223734, 4394.54729449], [3762.87179412, 3647.92239757], [4466.96738844, 4117.59583185], ..., [5894.56896391, 5494.74952642], [5509.52170002, 5212.33225555], [ nan, nan]], [[3984.66223734, 4394.54729449], [3762.87179412, 3647.92239757], [4466.96738844, 4117.59583185], ..., [5894.56896391, 5494.74952642], [5509.52170002, 5212.33225555], [5039.91969411, 4894.0879462 ]]], shape=(5, 167, 2))
<xarray.Dataset> Size: 95kB Dimensions: (cv: 5, date: 167, geo: 2) Coordinates: * cv (cv) object 40B 'Iteration 0' 'Iteration 1' ... 'Iteration 4' * date (date) datetime64[ns] 1kB 2018-04-02 2018-04-09 ... 2021-06-07 * geo (geo) object 16B 'geo_a' 'geo_b' Data variables: x1 (cv, date, geo) float64 13kB 159.3 159.3 56.19 ... 72.29 72.29 x2 (cv, date, geo) float64 13kB 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 event_1 (cv, date, geo) float64 13kB 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 event_2 (cv, date, geo) float64 13kB 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 dayofyear (cv, date, geo) float64 13kB 92.0 92.0 99.0 ... 151.0 158.0 158.0 t (cv, date, geo) float64 13kB 0.0 0.0 1.0 ... 165.0 166.0 166.0 y (cv, date, geo) float64 13kB 3.985e+03 4.395e+03 ... 4.894e+03xarray.Dataset -
- cv: 5
- date: 179
- geo: 2
- channel: 2
- control: 2
- cv(cv)object'Iteration 0' ... 'Iteration 4'
array(['Iteration 0', 'Iteration 1', 'Iteration 2', 'Iteration 3', 'Iteration 4'], dtype=object) - date(date)datetime64[ns]2018-04-02 ... 2021-08-30
array(['2018-04-02T00:00:00.000000000', '2018-04-09T00:00:00.000000000', '2018-04-16T00:00:00.000000000', '2018-04-23T00:00:00.000000000', '2018-04-30T00:00:00.000000000', '2018-05-07T00:00:00.000000000', '2018-05-14T00:00:00.000000000', '2018-05-21T00:00:00.000000000', '2018-05-28T00:00:00.000000000', '2018-06-04T00:00:00.000000000', '2018-06-11T00:00:00.000000000', '2018-06-18T00:00:00.000000000', '2018-06-25T00:00:00.000000000', '2018-07-02T00:00:00.000000000', '2018-07-09T00:00:00.000000000', '2018-07-16T00:00:00.000000000', '2018-07-23T00:00:00.000000000', '2018-07-30T00:00:00.000000000', '2018-08-06T00:00:00.000000000', '2018-08-13T00:00:00.000000000', '2018-08-20T00:00:00.000000000', '2018-08-27T00:00:00.000000000', '2018-09-03T00:00:00.000000000', '2018-09-10T00:00:00.000000000', '2018-09-17T00:00:00.000000000', '2018-09-24T00:00:00.000000000', '2018-10-01T00:00:00.000000000', '2018-10-08T00:00:00.000000000', '2018-10-15T00:00:00.000000000', '2018-10-22T00:00:00.000000000', '2018-10-29T00:00:00.000000000', '2018-11-05T00:00:00.000000000', '2018-11-12T00:00:00.000000000', '2018-11-19T00:00:00.000000000', '2018-11-26T00:00:00.000000000', '2018-12-03T00:00:00.000000000', '2018-12-10T00:00:00.000000000', '2018-12-17T00:00:00.000000000', '2018-12-24T00:00:00.000000000', '2018-12-31T00:00:00.000000000', '2019-01-07T00:00:00.000000000', '2019-01-14T00:00:00.000000000', '2019-01-21T00:00:00.000000000', '2019-01-28T00:00:00.000000000', '2019-02-04T00:00:00.000000000', '2019-02-11T00:00:00.000000000', '2019-02-18T00:00:00.000000000', '2019-02-25T00:00:00.000000000', '2019-03-04T00:00:00.000000000', '2019-03-11T00:00:00.000000000', '2019-03-18T00:00:00.000000000', '2019-03-25T00:00:00.000000000', '2019-04-01T00:00:00.000000000', '2019-04-08T00:00:00.000000000', '2019-04-15T00:00:00.000000000', '2019-04-22T00:00:00.000000000', '2019-04-29T00:00:00.000000000', '2019-05-06T00:00:00.000000000', '2019-05-13T00:00:00.000000000', '2019-05-20T00:00:00.000000000', '2019-05-27T00:00:00.000000000', '2019-06-03T00:00:00.000000000', '2019-06-10T00:00:00.000000000', '2019-06-17T00:00:00.000000000', '2019-06-24T00:00:00.000000000', '2019-07-01T00:00:00.000000000', '2019-07-08T00:00:00.000000000', '2019-07-15T00:00:00.000000000', '2019-07-22T00:00:00.000000000', '2019-07-29T00:00:00.000000000', '2019-08-05T00:00:00.000000000', '2019-08-12T00:00:00.000000000', '2019-08-19T00:00:00.000000000', '2019-08-26T00:00:00.000000000', '2019-09-02T00:00:00.000000000', '2019-09-09T00:00:00.000000000', '2019-09-16T00:00:00.000000000', '2019-09-23T00:00:00.000000000', '2019-09-30T00:00:00.000000000', '2019-10-07T00:00:00.000000000', '2019-10-14T00:00:00.000000000', '2019-10-21T00:00:00.000000000', '2019-10-28T00:00:00.000000000', '2019-11-04T00:00:00.000000000', '2019-11-11T00:00:00.000000000', '2019-11-18T00:00:00.000000000', '2019-11-25T00:00:00.000000000', '2019-12-02T00:00:00.000000000', '2019-12-09T00:00:00.000000000', '2019-12-16T00:00:00.000000000', '2019-12-23T00:00:00.000000000', '2019-12-30T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-13T00:00:00.000000000', '2020-01-20T00:00:00.000000000', '2020-01-27T00:00:00.000000000', '2020-02-03T00:00:00.000000000', '2020-02-10T00:00:00.000000000', '2020-02-17T00:00:00.000000000', '2020-02-24T00:00:00.000000000', '2020-03-02T00:00:00.000000000', '2020-03-09T00:00:00.000000000', '2020-03-16T00:00:00.000000000', '2020-03-23T00:00:00.000000000', '2020-03-30T00:00:00.000000000', '2020-04-06T00:00:00.000000000', '2020-04-13T00:00:00.000000000', '2020-04-20T00:00:00.000000000', '2020-04-27T00:00:00.000000000', '2020-05-04T00:00:00.000000000', '2020-05-11T00:00:00.000000000', '2020-05-18T00:00:00.000000000', '2020-05-25T00:00:00.000000000', '2020-06-01T00:00:00.000000000', '2020-06-08T00:00:00.000000000', '2020-06-15T00:00:00.000000000', '2020-06-22T00:00:00.000000000', '2020-06-29T00:00:00.000000000', '2020-07-06T00:00:00.000000000', '2020-07-13T00:00:00.000000000', '2020-07-20T00:00:00.000000000', '2020-07-27T00:00:00.000000000', '2020-08-03T00:00:00.000000000', '2020-08-10T00:00:00.000000000', '2020-08-17T00:00:00.000000000', '2020-08-24T00:00:00.000000000', '2020-08-31T00:00:00.000000000', '2020-09-07T00:00:00.000000000', '2020-09-14T00:00:00.000000000', '2020-09-21T00:00:00.000000000', '2020-09-28T00:00:00.000000000', '2020-10-05T00:00:00.000000000', '2020-10-12T00:00:00.000000000', '2020-10-19T00:00:00.000000000', '2020-10-26T00:00:00.000000000', '2020-11-02T00:00:00.000000000', '2020-11-09T00:00:00.000000000', '2020-11-16T00:00:00.000000000', '2020-11-23T00:00:00.000000000', '2020-11-30T00:00:00.000000000', '2020-12-07T00:00:00.000000000', '2020-12-14T00:00:00.000000000', '2020-12-21T00:00:00.000000000', '2020-12-28T00:00:00.000000000', '2021-01-04T00:00:00.000000000', '2021-01-11T00:00:00.000000000', '2021-01-18T00:00:00.000000000', '2021-01-25T00:00:00.000000000', '2021-02-01T00:00:00.000000000', '2021-02-08T00:00:00.000000000', '2021-02-15T00:00:00.000000000', '2021-02-22T00:00:00.000000000', '2021-03-01T00:00:00.000000000', '2021-03-08T00:00:00.000000000', '2021-03-15T00:00:00.000000000', '2021-03-22T00:00:00.000000000', '2021-03-29T00:00:00.000000000', '2021-04-05T00:00:00.000000000', '2021-04-12T00:00:00.000000000', '2021-04-19T00:00:00.000000000', '2021-04-26T00:00:00.000000000', '2021-05-03T00:00:00.000000000', '2021-05-10T00:00:00.000000000', '2021-05-17T00:00:00.000000000', '2021-05-24T00:00:00.000000000', '2021-05-31T00:00:00.000000000', '2021-06-07T00:00:00.000000000', '2021-06-14T00:00:00.000000000', '2021-06-21T00:00:00.000000000', '2021-06-28T00:00:00.000000000', '2021-07-05T00:00:00.000000000', '2021-07-12T00:00:00.000000000', '2021-07-19T00:00:00.000000000', '2021-07-26T00:00:00.000000000', '2021-08-02T00:00:00.000000000', '2021-08-09T00:00:00.000000000', '2021-08-16T00:00:00.000000000', '2021-08-23T00:00:00.000000000', '2021-08-30T00:00:00.000000000'], dtype='datetime64[ns]') - geo(geo)<U5'geo_a' 'geo_b'
array(['geo_a', 'geo_b'], dtype='<U5')
- channel(channel)<U2'x1' 'x2'
array(['x1', 'x2'], dtype='<U2')
- control(control)<U7'event_1' 'event_2'
array(['event_1', 'event_2'], dtype='<U7')
- channel_data(cv, date, geo, channel)float64159.3 0.0 159.3 ... 0.0 219.4 0.0
array([[[[159.29000897, 0. ], [159.29000897, 0. ]], [[ 56.19423822, 0. ], [ 56.19423822, 0. ]], [[146.20013314, 0. ], [146.20013314, 0. ]], ..., [[ nan, nan], [ nan, nan]], [[ nan, nan], [ nan, nan]], [[ nan, nan], [ nan, nan]]], ... [[[159.29000897, 0. ], [159.29000897, 0. ]], [[ 56.19423822, 0. ], [ 56.19423822, 0. ]], [[146.20013314, 0. ], [146.20013314, 0. ]], ..., [[ 85.94111106, 0. ], [ 85.94111106, 0. ]], [[140.12864387, 0. ], [140.12864387, 0. ]], [[219.42858028, 0. ], [219.42858028, 0. ]]]], shape=(5, 179, 2, 2)) - channel_scale(cv, geo, channel)float64498.3 497.2 498.3 ... 498.3 497.2
array([[[498.32906453, 497.18715583], [498.32906453, 497.18715583]], [[498.32906453, 497.18715583], [498.32906453, 497.18715583]], [[498.32906453, 497.18715583], [498.32906453, 497.18715583]], [[498.32906453, 497.18715583], [498.32906453, 497.18715583]], [[498.32906453, 497.18715583], [498.32906453, 497.18715583]]]) - control_data(cv, date, geo, control)float640.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
array([[[[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]], ..., [[nan, nan], [nan, nan]], [[nan, nan], [nan, nan]], [[nan, nan], [nan, nan]]], ... [[[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]], ..., [[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 0., 0.]]]], shape=(5, 179, 2, 2)) - dayofyear(cv, date)float6492.0 99.0 106.0 ... 235.0 242.0
array([[ 92., 99., 106., 113., 120., 127., 134., 141., 148., 155., 162., 169., 176., 183., 190., 197., 204., 211., 218., 225., 232., 239., 246., 253., 260., 267., 274., 281., 288., 295., 302., 309., 316., 323., 330., 337., 344., 351., 358., 365., 7., 14., 21., 28., 35., 42., 49., 56., 63., 70., 77., 84., 91., 98., 105., 112., 119., 126., 133., 140., 147., 154., 161., 168., 175., 182., 189., 196., 203., 210., 217., 224., 231., 238., 245., 252., 259., 266., 273., 280., 287., 294., 301., 308., 315., 322., 329., 336., 343., 350., 357., 364., 6., 13., 20., 27., 34., 41., 48., 55., 62., 69., 76., 83., 90., 97., 104., 111., 118., 125., 132., 139., 146., 153., 160., 167., 174., 181., 188., 195., 202., 209., 216., 223., 230., 237., 244., 251., 258., 265., 272., 279., 286., 293., 300., 307., 314., 321., 328., 335., 342., 349., 356., 363., 4., 11., 18., 25., 32., 39., 46., 53., 60., 67., 74., 81., 88., 95., 102., 109., 116., 123., 130., 137., 144., 151., 158., 165., 172., 179., 186., 193., 200., 207., 214., nan, nan, nan, nan], [ 92., 99., 106., 113., 120., 127., 134., 141., 148., 155., 162., 169., 176., 183., 190., 197., 204., 211., 218., 225., 232., 239., 246., 253., 260., 267., 274., 281., 288., 295., 302., 309., 316., ... 74., 81., 88., 95., 102., 109., 116., 123., 130., 137., 144., 151., 158., 165., 172., 179., 186., 193., 200., 207., 214., 221., 228., 235., nan], [ 92., 99., 106., 113., 120., 127., 134., 141., 148., 155., 162., 169., 176., 183., 190., 197., 204., 211., 218., 225., 232., 239., 246., 253., 260., 267., 274., 281., 288., 295., 302., 309., 316., 323., 330., 337., 344., 351., 358., 365., 7., 14., 21., 28., 35., 42., 49., 56., 63., 70., 77., 84., 91., 98., 105., 112., 119., 126., 133., 140., 147., 154., 161., 168., 175., 182., 189., 196., 203., 210., 217., 224., 231., 238., 245., 252., 259., 266., 273., 280., 287., 294., 301., 308., 315., 322., 329., 336., 343., 350., 357., 364., 6., 13., 20., 27., 34., 41., 48., 55., 62., 69., 76., 83., 90., 97., 104., 111., 118., 125., 132., 139., 146., 153., 160., 167., 174., 181., 188., 195., 202., 209., 216., 223., 230., 237., 244., 251., 258., 265., 272., 279., 286., 293., 300., 307., 314., 321., 328., 335., 342., 349., 356., 363., 4., 11., 18., 25., 32., 39., 46., 53., 60., 67., 74., 81., 88., 95., 102., 109., 116., 123., 130., 137., 144., 151., 158., 165., 172., 179., 186., 193., 200., 207., 214., 221., 228., 235., 242.]]) - target_data(cv, date, geo)float640.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
array([[[ 0., 0.], [ 0., 0.], [ 0., 0.], ..., [nan, nan], [nan, nan], [nan, nan]], [[ 0., 0.], [ 0., 0.], [ 0., 0.], ..., [nan, nan], [nan, nan], [nan, nan]], [[ 0., 0.], [ 0., 0.], [ 0., 0.], ..., [ 0., 0.], [nan, nan], [nan, nan]], [[ 0., 0.], [ 0., 0.], [ 0., 0.], ..., [ 0., 0.], [ 0., 0.], [nan, nan]], [[ 0., 0.], [ 0., 0.], [ 0., 0.], ..., [ 0., 0.], [ 0., 0.], [ 0., 0.]]], shape=(5, 179, 2)) - target_scale(cv, geo)float648.312e+03 8.441e+03 ... 8.441e+03
array([[8312.40754439, 8440.6617456 ], [8312.40754439, 8440.6617456 ], [8312.40754439, 8440.6617456 ], [8312.40754439, 8440.6617456 ], [8312.40754439, 8440.6617456 ]]) - trend_t(cv, date)float640.0 7.0 ... 1.239e+03 1.246e+03
array([[ 0., 7., 14., 21., 28., 35., 42., 49., 56., 63., 70., 77., 84., 91., 98., 105., 112., 119., 126., 133., 140., 147., 154., 161., 168., 175., 182., 189., 196., 203., 210., 217., 224., 231., 238., 245., 252., 259., 266., 273., 280., 287., 294., 301., 308., 315., 322., 329., 336., 343., 350., 357., 364., 371., 378., 385., 392., 399., 406., 413., 420., 427., 434., 441., 448., 455., 462., 469., 476., 483., 490., 497., 504., 511., 518., 525., 532., 539., 546., 553., 560., 567., 574., 581., 588., 595., 602., 609., 616., 623., 630., 637., 644., 651., 658., 665., 672., 679., 686., 693., 700., 707., 714., 721., 728., 735., 742., 749., 756., 763., 770., 777., 784., 791., 798., 805., 812., 819., 826., 833., 840., 847., 854., 861., 868., 875., 882., 889., 896., 903., 910., 917., 924., 931., 938., 945., 952., 959., 966., 973., 980., 987., 994., 1001., 1008., 1015., 1022., 1029., 1036., 1043., 1050., 1057., 1064., 1071., 1078., 1085., 1092., 1099., 1106., 1113., 1120., 1127., 1134., 1141., 1148., 1155., 1162., 1169., 1176., 1183., 1190., 1197., 1204., 1211., 1218., nan, nan, nan, nan], ... [ 0., 7., 14., 21., 28., 35., 42., 49., 56., 63., 70., 77., 84., 91., 98., 105., 112., 119., 126., 133., 140., 147., 154., 161., 168., 175., 182., 189., 196., 203., 210., 217., 224., 231., 238., 245., 252., 259., 266., 273., 280., 287., 294., 301., 308., 315., 322., 329., 336., 343., 350., 357., 364., 371., 378., 385., 392., 399., 406., 413., 420., 427., 434., 441., 448., 455., 462., 469., 476., 483., 490., 497., 504., 511., 518., 525., 532., 539., 546., 553., 560., 567., 574., 581., 588., 595., 602., 609., 616., 623., 630., 637., 644., 651., 658., 665., 672., 679., 686., 693., 700., 707., 714., 721., 728., 735., 742., 749., 756., 763., 770., 777., 784., 791., 798., 805., 812., 819., 826., 833., 840., 847., 854., 861., 868., 875., 882., 889., 896., 903., 910., 917., 924., 931., 938., 945., 952., 959., 966., 973., 980., 987., 994., 1001., 1008., 1015., 1022., 1029., 1036., 1043., 1050., 1057., 1064., 1071., 1078., 1085., 1092., 1099., 1106., 1113., 1120., 1127., 1134., 1141., 1148., 1155., 1162., 1169., 1176., 1183., 1190., 1197., 1204., 1211., 1218., 1225., 1232., 1239., 1246.]])
- created_at :
- 2025-12-20T13:45:01.515695+00:00
- arviz_version :
- 0.22.0
- inference_library :
- pymc
- inference_library_version :
- 5.26.1
<xarray.Dataset> Size: 88kB Dimensions: (cv: 5, date: 179, geo: 2, channel: 2, control: 2) Coordinates: * cv (cv) object 40B 'Iteration 0' 'Iteration 1' ... 'Iteration 4' * date (date) datetime64[ns] 1kB 2018-04-02 ... 2021-08-30 * geo (geo) <U5 40B 'geo_a' 'geo_b' * channel (channel) <U2 16B 'x1' 'x2' * control (control) <U7 56B 'event_1' 'event_2' Data variables: channel_data (cv, date, geo, channel) float64 29kB 159.3 0.0 ... 219.4 0.0 channel_scale (cv, geo, channel) float64 160B 498.3 497.2 ... 498.3 497.2 control_data (cv, date, geo, control) float64 29kB 0.0 0.0 0.0 ... 0.0 0.0 dayofyear (cv, date) float64 7kB 92.0 99.0 106.0 ... 228.0 235.0 242.0 target_data (cv, date, geo) float64 14kB 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 target_scale (cv, geo) float64 80B 8.312e+03 8.441e+03 ... 8.441e+03 trend_t (cv, date) float64 7kB 0.0 7.0 14.0 ... 1.239e+03 1.246e+03 Attributes: created_at: 2025-12-20T13:45:01.515695+00:00 arviz_version: 0.22.0 inference_library: pymc inference_library_version: 5.26.1xarray.Dataset -
- cv: 5
- cv(cv)object'Iteration 0' ... 'Iteration 4'
array(['Iteration 0', 'Iteration 1', 'Iteration 2', 'Iteration 3', 'Iteration 4'], dtype=object)
- metadata(cv)object{'X_train': date ...
array([{'X_train': date x1 x2 event_1 event_2 dayofyear t \ 0 2018-04-02 159.290009 0.000000 0.0 0.0 92 0 1 2018-04-09 56.194238 0.000000 0.0 0.0 99 1 2 2018-04-16 146.200133 0.000000 0.0 0.0 106 2 3 2018-04-23 35.699276 0.000000 0.0 0.0 113 3 4 2018-04-30 193.372577 0.000000 0.0 0.0 120 4 .. ... ... ... ... ... ... ... 158 2021-04-12 168.613478 0.000000 0.0 0.0 102 158 159 2021-04-19 84.881426 466.551166 0.0 0.0 109 159 160 2021-04-26 213.802453 457.668942 0.0 0.0 116 160 161 2021-05-03 455.217281 0.000000 0.0 0.0 123 161 162 2021-05-10 71.233477 0.000000 0.0 0.0 130 162 geo 0 geo_a 1 geo_a 2 geo_a 3 geo_a 4 geo_a .. ... ... 173 3192.879593 174 3553.546148 175 5565.509682 176 4137.651485 177 4479.041351 178 4675.973439 167 4700.750706 168 4430.071649 169 4504.576873 170 6155.961220 171 4543.751550 172 3662.806109 173 3348.385459 174 4234.866593 175 5572.217946 176 3890.190714 177 4808.945821 178 4709.573390 Name: y, dtype: float64} ], dtype=object)
<xarray.Dataset> Size: 80B Dimensions: (cv: 5) Coordinates: * cv (cv) object 40B 'Iteration 0' 'Iteration 1' ... 'Iteration 4' Data variables: metadata (cv) object 40B {'X_train': date x1 ...xarray.Dataset
Model Diagnostics#
First, we evaluate whether we have any divergences in the model (we can extend the analysis more more model diagnostics).
# Let's check if there are any divergences
diverging_count = int(results.sample_stats["diverging"].values.sum())
print("Diverging transitions:", diverging_count)
Diverging transitions: 0
We have no divergences in the model 😃!
Evaluate Parameter Stability#
Next, we look at the stability of the model parameters. For a good model, these should not change abruptly over time.
Adstock Alpha
Saturation Beta
cv.plot.param_stability(
results,
parameter=["saturation_beta"],
dims={"geo": ["geo_a", "geo_b"]},
);
Saturation Lambda
cv.plot.param_stability(
results,
parameter=["saturation_lam"],
# dims={"geo": ["geo_a", "geo_b"]}
);
The parameters seem to be stable over time. This implies that the estimates ROAS will not change abruptly over time.
Evaluate Out of Sample Predictions#
Finally, we evaluate the out of sample predictions. To begin with, we can simply plot the posterior predictive distributions for each iteration for both the training and test data.
# Plot model predictions across time slices
cv.plot.cv_predictions(
results,
# dims={"geo": ["geo_b"]} # to plot specific dimensions only
);
Overall, the out of sample predictions look very good 🚀!
We can quantify the model performance using the Continuous Ranked Probability Score (CRPS).
“The CRPS — Continuous Ranked Probability Score — is a score function that compares a single ground truth value to a Cumulative Distribution Function. It can be used as a metric to evaluate a model’s performance when the target variable is continuous and the model predicts the target’s distribution; Examples include Bayesian Regression or Bayesian Time Series models.”
For a nice explanation of the CRPS, check out this blog post.
In PyMC-Marketing, we provide the function crps to compute this metric. We can use it to compute the CRPS score for each iteration.
# Compute the CRPS score for each iteration and plot!
cv.plot.cv_crps(
results,
# dims={"geo": ["geo_b"]} # to plot specific dimensions only
);
Event though the visual results look great, we see that the CRPS mildly decreases for the training data while it increases for the test data as we increase the size of the training data. This is a sign that we are overfitting the model to the training data. Some strategies to overcome this issue include using regularization techniques and re-evaluate the model specification. This should be an iterative process.
%load_ext watermark
%watermark -n -u -v -iv -w -p pymc_marketing,pytensor,numpyro
Last updated: Sat Dec 20 2025
Python implementation: CPython
Python version : 3.13.11
IPython version : 9.8.0
pymc_marketing: 0.17.1
pytensor : 2.35.1
numpyro : 0.19.0
arviz : 0.22.0
matplotlib : 3.10.8
numpy : 2.3.5
pandas : 2.3.3
pymc_marketing: 0.17.1
Watermark: 2.5.1